

CGAP Documentation

[image: _images/badge.svg][image: _images/1569c11a45e7b9af94d8b5942600af12623a5017.svg]Welcome to CGAP! We are a team of scientists, clinicians, and developers who aim to streamline the clinical genetics workflow. The following locations are different deployments of our data portal:

	cgap-dbmi [https://cgap-dbmi.hms.harvard.edu/] DBMI production account

	cgap-training [https://cgap-training.hms.harvard.edu/] demo account for potential users

	cgap-devtest [https://cgap-devtest.hms.harvard.edu/] general development/testing account

	cgap-wolf [https://cgap-wolf.hms.harvard.edu/] workflow development account

Be warned that features are under active development and may not be stable! Visit the demo account for the best experience. To get started, read the following documentation on the infrastructure and how to work with the data model:

Infrastructure

	CGAP Infrastructure Landing Page

	Local Installation

	Infrastructure Overview

	Dataflow Overview

	Variant Representation

	How to Provision Annotations

	CGAP-Docker (Local)

	CGAP-Docker (Production)

Data Model

	Updating Items from Ontologies

CGAP Infrastructure Landing Page

Welcome! This landing page contains some information on what CGAP is and how to get started with the
deployment of CGAP.

Overview

The Computational Genome Analysis Platform (CGAP) is an intuitive, open-source analysis tool designed to
support complex research & clinical genomics workflows. It implements powerful variant discovery &
diagnostic tools for individual samples and cohorts with clinical accuracy and reporting capabilities in
one platform. CGAP is built on the AWS Cloud and is intended to be used within a single isolated AWS Account.

If you are interested in deploying CGAP, access to the infrastructure repository (4dn-cloud-infra) can be
negotiated. Once the repository is open source this step will not be necessary, but at this time
the system is considered to be in alpha stage release only, available on a confidential basis
to a limited audience for early feedback. After we have assessed the stability we will open source
this repository under an appropriate license.

Until then, please reach out the CGAP Operations team for access to the code. We will work with you to
deploy and adapt CGAP to the needs of your project.

Local Installation

Docker Instructions

The portal is meant to be run via Docker, but running tests or a local deployment outside of Docker requires the legacy instructions below. For Docker instructions see docker local docs..

Legacy Instructions

The following instructions are for running a CGAP deployment with macOS and homebrew.

Note that as of summer 2021, these instructions are out of date. Please refer to the Docker setup. There are no guarantees the legacy instructions will work from this point forward.

CGAP is known to work with Python 3.7.x and 3.8.x and will not work with Python 3.9 or greater.
If part of the HMS team, it is recommended to use a high patch version, such as Python 3.8.13,
since that’s what we try to do with our servers, but any version of 3.8 should work if you
find you are unable to install that particular patch version.
It is best practice to create a fresh Python
virtualenv using one of these versions before proceeding to the following steps.

	Step 0: Obtain AWS keys. These will need to added to your environment variables or through the AWS CLI (installed later in this process).

	Step 1: Verify that homebrew is working properly:

$ brew doctor

	Step 2: Install or update dependencies:

$ brew install libevent libmagic libxml2 libxslt openssl postgresql graphviz nginx python3
$ brew install freetype libjpeg libtiff littlecms webp # Required by Pillow
$ brew cask install homebrew/cask-versions/adoptopenjdk8
$ brew tap homebrew/versions
$ brew install opensearch node@16

You may need to link the brew-installed opensearch:

$ brew link --force opensearch

If you are migrating from elasticsearch@6 to opensearch:

$ brew uninstall elasticsearch@6
$ brew install opensearch

Note that this may bring in a new JDK.

If you need to update dependencies:

$ brew update
$ brew upgrade
$ rm -rf encoded/eggs

	Step 3: Run make:

$ make build

NOTE:
If you have issues with postgres or the python interface to it (psycogpg2) you
probably need to install postgresql via homebrew (as above)
If you have issues with Pillow you may need to install new xcode command line tools:
- First update Xcode from AppStore (reboot)
$ xcode-select --install

	If you wish to completely rebuild the application, or have updated dependencies:

	$ make clean

Then goto Step 3.

	Step 4: Start the application locally

In one terminal startup the database servers and nginx proxy with:

$ make deploy1

This will first clear any existing data in /tmp/encoded.
Then postgres and elasticsearch servers will be initiated within /tmp/encoded.
An nginx proxy running on port 8000 will be started.
The servers are started, and finally the test set will be loaded.

In a second terminal, run the app with:

$ make deploy2

Indexing will then proceed in a background thread similar to the production setup.

Running the app with the –reload flag will cause the app to restart when changes to the Python source files are detected:

$ bin/pserve development.ini --reload

If doing this, it is highly recommended to set the following environment variable to override the default file monitor used. The default monitor on Unix systems is watchman, which can cause problems due too tracking too many files and degrade performance. Use the following environment variable:

$ HUPPER_DEFAULT_MONITOR=hupper.polling.PollingFileMonitor

Browse to the interface at http://localhost:8000/.

Running tests

To run specific tests locally:

$ bin/test -k test_name

To run with a debugger:

$ bin/test --pdb

Specific tests to run locally for schema changes:

$ bin/test -k test_load_workbook
$ bin/test -k test_edw_sync

Run the Pyramid tests with:

$ bin/test

Note: to run against chrome you should first:

$ brew install chromedriver

Run the Javascript tests with:

$ npm test

Or if you need to supply command line arguments:

$./node_modules/.bin/jest

Building Javascript

Our Javascript is written using ES6 and JSX, so needs to be compiled
using babel and webpack.

To build production-ready bundles, do:

$ npm run build

(This is also done as part of running buildout.)

To build development bundles and continue updating them as you edit source files, run:

$ npm run dev-quick

The development bundles are not minified, to speed up building.

Notes on SASS/Compass

We use the SASS [http://sass-lang.com/] and node-sass [https://github.com/sass/node-sass/] CSS preprocessors.
The buildout installs the SASS utilities and compiles the CSS.
When changing the SCSS source files you must recompile the CSS using one of the following methods:

Compiling “on the fly”

Node-sass can watch for any changes made to .scss files and instantly compile them to .css.
To start this, from the root of the project do:

$ npm run watch-scss

Force compiling

$ npm run build-scss

SublimeLinter

To setup SublimeLinter with Sublime Text 3, first install the linters:

$ easy_install-2.7 flake8
$ npm install -g jshint
$ npm install -g jsxhint

After first setting up Package Control [https://sublime.wbond.net/}}] (follow install and usage instructions on site), use it to install the following packages in Sublime Text 3:

	sublimelinter

	sublimelinter-flake8

	sublimelinter-jsxhint

	jsx

	sublimelinter-jshint

Infrastructure Overview

[image: _images/cgap_infra_diagram.png]
Figure 1: CGAP Infrastructure Diagram. The purpose of this diagram is to give an overview of the core functionality of the system. It is up to date as of March 2021.

Dataflow Overview

[image: _images/portal_dataflow_diagram.png]
Figure 1: CGAP Dataflow/Use Case Diagram. This diagram illustrates the data browse and upload use cases, showing how that data flows through the system and which infrastructure components communicate. Note that file uploads are federated via pre-signed URL then uploaded directly to S3.

Variant Representation

The goal is to create a useful JSON-LD Item hierarchy for working with variants. To do this, we create several different item types that are related to each other. It is possible more relationships are added, but these items form a logically related grouping so are discussed in depth in this document. Previously, these types were generated from the mapping table, but now are maintained directly.

	GeneAnnotationField - these are annotation fields on Genes that come from Daniel’s annotation DB but are processed from the gene mapping table, from this point on referred to as the gene table.

	Gene - the gene item schema is dynamically built from the gene table. The gene items come from Daniel’s annotation DB and are posted as is and validated against the schema.

	AnnotationField - these are annotation fields on Variants that also come from Daniel’s annotation DB but are processed from the variant mapping table, from this point on referred to as the variant table.

	VariantConsequence - this is an item that encompasses information on the consequence of a variant. It has a well-defined schema and items that are generated by the wranglers.

	Variant - the variant item schema was built from the variant table but is now directly maintained. These items represent a catalogued SNV discrepancy between an expectation set by the reference genome and an observed/measured reality that has been seen to occur in some individuals. Most commonly in our data, this is an SNV, but in principle it could be any kind of variant. To generate these items we process annotated VCF files which have passed through the bio-informatics pipeline then annotated by Daniel’s annotation DB. They are again validated against the schema on post.

	VariantSample - the variant_sample schema (and embeds) was built from the variant table but is now directly maintained. These items encompass information about the sample(s) that registered this variant and is also read from the VCF. Since multiple people could have been sequenced, the variant samples on a particular VCF do not necessary have the variant genotype (but the proband does).

	StructuralVariant - same idea as variant, except it represents a CNV/SV call.

	StructuralVariantSample - same idea as variant_sample, except a sample for a structural_variant.

This last step of this pipeline, which will be discussed below, is ingesting these elements. The following 5 things constitute an “ingestion version”:

	Variant Table (–> AnnotationFields)

	Gene Table (–> GeneAnnotationFields)

	Gene List (–> Genes)

	(Collection of) VCF(s) (–> Variants, VariantSamples)

	Set of VariantConsequence items

All items ingested as part of the first 4 will be given a ‘MUTANNO_Version’ field, which will hold the annotation DB version used to ingest. Note that only one of these ‘versions’ can exist in our system since the schemas are dynamically generated. The relevant items below also have the following links:

	Variants link to Gene and VariantConsequence items

	VariantSample links to Variant (and thus Gene and VariantConsequence)

See ingestion.py for information on code structure. Note that this structure is now deprecated in favor of direct maintaining of the schemas. The only step that runs now is VCF ingestion.

Ingestion Step 1: Gene/Variant Table Intake

The first thing we need to do is build the annotation field items and generated schemas for variant, variant_sample and gene. The code that does this mostly lives in variant_table_intake.py and is extended/repurposed in gene_table_intake.py. Since the tables are similar there are very few code differences needed in parsing the two tables. Note that Gene must come before Variant!

Ingestion Step 2: Gene Ingestion

Once we have our schemas, we can ingest/post the genes. These come directly from Daniel’s annotation DB so not much work is required. They are posted as is, see ingest_genes.py.

Ingestion Step 2.5: VariantConsequences

All variant consequence items must be posted prior to ingesting the VCF, as these variants will linkTo the appropriate consequence items. These items should change very infrequently as changes to them will cause cascading invalidation and may have revision history implications.

Ingestion Step 3: VCF Ingestion

The last part of the process is ingesting the variants from VCF files and forming appropriate links. Links to Gene and VariantConsequence will happen automatically. Links from VariantSample to Variant are created manually. This requires both parsing the VCF file and formatting the items appropriately based on the schema. See ingest_vcf.py.

VCF Parsing Details

After producing the schemas it is time to ingest the annotated VCF. This file has a complicated structure described below. This step is written in a more object-oriented way with VCFParser as the main class containing several methods specific to VCF parsing. Helper functions handle specific steps and culminate in the run method, which processes and entire VCF file producing all the variant and variant sample items. An overview of the steps is below.

	Read VCF Metadata. This includes splitting VCF fields into annotation and non-annotation fields, that way we know which fields will require additional post processing.

	Parse standard VCF fields. These are easily acquired as there is nothing special about them. The variant sample item consists entirely of these fields.

	Parse annotation fields. These are much trickier because they are formatted differently and must be encoded a certain way to not break the VCF specification. More on this follows in the VCF specification.

Annotatated VCF Specification

Below is an outline of the annotated VCF structure with an example on how exactly it is processed.

VCF-Specific Restrictions

For the annotated VCF we make use of INFO fields to encapsulate our annotations. This field is part of the VCF structure and has the following restrictions on values within the field (ie: ‘AC=2;VEP=1|2…’ etc).
1. String format (conversion to type specified on the Mapping Table is done later)
2. No whitespace (tabs, spaces or otherwise)
3. No semicolon (delineates fields in INFO block)
4. No equals = (delineates fields in INFO block, ie: AC=2;VEP=1,2,3;)
5. Commas can only be used to separate annotation values

Our Restrictions

Annotation fields that should be processed as such must be marked with a MUTANNO tag in the VCF metadata as below.

Annotation fields that have MUTANNO tags must also have a corresponding INFO tag. This tag must specify the format if the annotation is multi-valued and must be pipe (|) separated. An example of each is below.

If an annotation field can have multiple entries, as is the case with VEP, these entries must be comma separated as consistent with the VCF requirements. See raw row entry below.

If an annotation field within a sub-embedded object is an array, such as vep_domains, those entries must be tilde (~) separated and no further nesting is allowed.

Separator Summary

	Tab separates VCF specific fields and is thus restricted.

	Semicolon separates different annotation fields within INFO and is thus restricted.

	Comma separates sub-embedded objects within a single INFO field (such as VEP) and cannot be used in any other way.

	Pipe separates multi-valued annotation fields and cannot be used in any other way

	Tilde separates sub-embedded objects that are also arrays, such as vep_domain and cannot be used in any other way.

Parsing Example

Given these restrictions, below is a detailed walk through of how the VCF parses the annotation fields given this specification. A truncated example entry is below. Assume we are able to grab appropriate MUTANNO/INFO header information. New lines are inserted for readability but are not present in the actual file.

The first line is the VCF field header. Fields other than INFO are readily accessible. All annotation fields are collapsed into the INFO section. FORMAT and HG002 follow after INFO. The fields below are tab separated as consistent with the VCF specification. A tab separates the last part of the data above and the INFO data below.

These annotations are all single valued and are thus processed directly as strings. Conversion to actual types is done later.

Above is a VEP annotation entry that is both multi-valued and has multiple entries. To parse this we first split on the comma to get the groups. Newlines are inserted to visualize the groups. We then split on pipe since the fields are pipe separated. Even if a field is blank a pipe must be present for that field otherwise we will not be able to determine which fields go with which values. Once we have all the fields, we then go through each one and post-process. If it is an array field (not shown in this example but consistent with point 4 above) then we split again on tilde to determine the array elements, otherwise the field value is cast to the appropriate type.

How to Provision Annotations

This section will describe how to “provision annotations”, which roughly means the process of ingesting annotation related items to the portal. Note that the paths in the commands that follow may change.

Local Machine

Follow the below steps. It takes 30-45 minutes to run.

	Startup back-end resources: make deploy1

	Startup waitress: make deploy2

	(If first time) Download genes: make download-genes

	Load annotations: make deploy3

Output

The ingestion command uses tqdm to show progress bars, so you can tell what stage of the process is currently ongoing. At the end the output will look something like the below.

100%|███████████████| 284/284 [00:09<00:00, 30.90gene_annotation_fields/s]

100%|███████████████| 21873/21873 [20:12<00:00, 18.04genes/s]

100%|███████████████| 340/340 [00:18<00:00, 18.79variant_annotation_fields/s]

46variants [00:18, 2.44variants/s]

ERROR:encoded.commands.variant_ingestion:Encountered VCF format error: could not convert string to float: '18,0,19,0'

The error at the end is expected with the latest VCF - if a different error occurs there should be some reasonable description. As an example, the one below looks like this:

ERROR:encoded.commands.variant_ingestion:Encountered VCF format error: could not convert string to float: '18,0,19,0'

It tells you exactly which file threw the error (src/encoded/commands/variant_ingestion.py), what type of error it was (VCF format error) and what caused it (TypeError). Errors like these should be reported, along with the VCF row which threw the error (the 47th variant in the VCF since we posted 46). In this case that line has an actual VCF spec validation error.

Ingesting Additional VCFs

To ingest more VCFs with the current setup, use the variant-ingestion command. See src/encoded/commands/variant_ingestion.py.

CGAP-Docker (Local)

With Docker, it is possible to run a local deployment of CGAP without installing any system level
dependencies other than Docker. A few important notes on this setup.

	Although the build dependency layer is cached, it still takes around 4 minutes to rebuild the front-end for each image. This limitation is tolerable considering the local deployment now identically matches the execution runtime of production.

	This setup only works when users have sourced AWS Keys in the main account (to connect to the shared ES cluster).

	IMPORTANT: Take care when working with local credentials - be careful not to write them to files that end up in container images that get pushed to a public registry!

Installing Docker

Install Docker with (OSX assumed):

$ brew install docker

Configuring CGAP Docker

Use the prepare-docker command to configure docker-compose.yml and docker-development.ini:

poetry run prepare-docker -h
usage: prepare-docker [-h] [--data-set {prod,test,local,deploy}]
 [--load-inserts] [--run-tests]
 [--s3-encrypt-key-id S3_ENCRYPT_KEY_ID]

Prepare docker files

optional arguments:
-h, --help show this help message and exit
--data-set {prod,test,local,deploy}
 the data set to use (default: local)
--load-inserts if supplied, causes inserts to be loaded (default: not
 loaded)
--run-tests if supplied, causes tests to be run in container
 (default: not tested)
--s3-encrypt-key-id S3_ENCRYPT_KEY_ID
 an encrypt key id (default: the empty string)

On initial run, you will want to run with the --load-inserts option so data is loaded. Pass --data-set local to get local inserts, or deploy to use the production inserts.

Building CGAP Docker

There are two new Make targets that should be sufficient for normal use. To build the image locally, ensure your AWS keys are sourced and run:

$ make build-docker-local # runs docker-compose build
$ make build-docker-local-clean # runs a no-cache build, regenerating all layers
$ make deploy-docker-local # runs docker-compose up
$ make deploy-docker-local-daemon # runs services in background

The build will take around 10 minutes the first time but will speed up dramatically after due to layer caching. In general, the rate limiting step for rebuilding is the front-end build (unless you are also updating dependencies, which will slow down the build further). Although this may seem like a drawback, the key benefit is that what you are running in Docker is essentially identical to that which is orchestrated on ECS in production. This should reduce our reliance/need for test environments.

Accessing CGAP Docker at Runtime

To access the running container:

$ docker ps # will show running containers
$ docker exec -it <container_id_prefix> bash

Alternative Configuration with Local ElasticSearch

ElasticSearch is too compute intensive to virtualize on most machines. For this reason we use the CGAP test ES cluster for this deployment instead of spinning up an ES cluster in Docker. It is possible however to modify docker-compose.yml to spinup a local Elasticsearch. If your machine can handle this it is the ideal setup, but typically things are just too slow for it to be viable (YMMV).

Common Issues

Some notable issues that you may encounter include:

	The NPM build may fail/hang - this can happen when Docker does not have enough resources. Try upping the amount CPU/RAM you are allocating to Docker.

	Nginx install fails to locate GPG key - this happens when the Docker internal cache has run out of space and needs to be cleaned - see documentation on docker prune [https://docs.docker.com/config/pruning/.].

Docker Command Cheatsheet

Below is a small list of useful Docker commands for advanced users:

$ docker-compose build # will trigger a build of the local cluster (see make build-docker-local)
$ docker-compose build --no-cache # will trigger a fresh build of the entire cluster (see make build-docker-local-clean)
$ docker-compose down # will stop cluster (can also ctrl-c)
$ docker-compose down --volumes # will remove cluster volumes as well
$ docker-compose up # will start cluster and log all output to console (see make deploy-docker-local)
$ docker-compose up -d # will start cluster in background using existing containers (see make deploy-docker-local-daemon)
$ docker-compose up -d -V --build # trigger a rebuild/recreation of cluster containers
$ docker system prune # will cleanup ALL unused Docker components - BE CAREFUL WITH THIS

CGAP-Docker (Production)

CGAP-Docker runs in production on AWS Elastic Container Service, meant to be orchestrated from the 4dn-cloud-infra repository. End users will modify the Makefile to suite their immediate build needs with respect to target AWS Account/ECR Repository/Tagging strategy. For more information on the specifics of the ECS setup, see 4dn-cloud-infra.

The CGAP Application has been orchestrated into the ECS Service/Task paradigm. As of writing all core application services are built into the same Docker image. Which entrypoint to run is configured by environment variable passed to the ECS Task. As such, we have 4 separate services described by the following table:

	Kind

	Use

	Num

	Spot

	vCPU

	Mem

	Notes

	Portal

	Services standard API requests

	1-4

	Yes

	4

	8192

	Needs autoscaling

	Indexer

	Hits /index at 1sec
intervals indefinitely.

	4 +

	Yes

	.25

	512

	Can auto-scale based on
Queue Depth

	Ingester

	Polls SQS for ingestion tasks

	1

	No

	1

	2048

	Need API to add tasks

Building an Image

NOTE: the following documentation is preserved for historical reasons in order to understand the build process.

YOU SHOULD NOT BUILD PRODUCTION IMAGES LOCALLY. ALWAYS USE CODEBUILD.

The production application configuration is in deploy/docker/production. A description of all the relevant files follows.

	Dockerfile - at repo top level - configurable file containing the Docker build instructions for all local and production images.

	docker-compose.yml - at repo top level - configures the local deployment, unused in production.

	assume_identity.py - script for pulling global application configuration from Secrets Manager. Note that this secret is meant to be generated by the Datastore stack in 4dn-cloud-infra and manually filled out. Note that the $IDENTITY option configures which secret is used by the application workers and is passed to ECS Task definitions by 4dn-cloud-infra.

	entrypoint.sh - resolves which entrypoint is used based on $application_type

	entrypoint_portal.sh - serves portal API requests

	entrypoint_deployment.sh - deployment entrypoint

	entrypoint_indexer.sh - indexer entrypoint

	entrypoint_ingester.sh - ingester entrypoint

	install_nginx.sh - script for pulling in nginx

	cgap_any_alpha.ini - base ini file used to build production.ini on the server given variables set in the GAC

	nginx.conf - nginx configuration

The following instructions describe how to build and push images. Note though that we assume an existing ECS setup. For instructions on how to orchestrate ECS, see 4dn-cloud-infra, but that is not the focus of this documentation.

	Ensure the orchestrator credentials are sourced, or that your IAM user has been granted sufficient perms to push to ECR.

	Run make ecr-login, which should pull ECR credentials using the currently active AWS credentials.

	Run make build-docker-production.

	Navigate to Foursight and queue the cluster update check. After around 5 minutes, the new images should be coming online. You can monitor the progress from the Target Groups console on AWS.

Tagging Strategy

As stated previously, there is a single image tag, typically latest, that determines the image tag that ECS will use. This tag is configurable from the 4dn-cloud-infra repository.

After a new image version has been pushed, issue a forced deployment update to the ECS cluster through Foursight. This action will spawn a new set of tasks for all services using the newer image tags. For the portal, once the new tasks are deemed healthy by ECS and the Application Load Balancer, they will be added to the Portal Target Group and immediately begin serving requests. At that time the old tasks will begin the de-registration process from the target group, after which they will be spun down. The remaining new tasks will come online more quickly since they do not need to pass load balancer health checks. Once the old tasks have been cleaned up, it is safe to trigger a deployment task through the Deployment Service.

Common Issues

In this section we detail some common errors and what to do about them. This section should be updated as more development in this setup occurs.

	Error: denied: User:<ARN> is not authorized to perform: ecr:InitiateLayerUpload on resource: <ECR REPO URL>

	This error can happen for several reasons:

	
	Invalid/incorrect IAM credentials

	IAM user has insufficient permissions

	IAM credentials are valid but from a different AWS account

Updating Items from Ontologies

Disorder and Phenotype Items correspond to ontology terms from the MONDO or HPO ontologies.

The Items are converted from owl ontology files to our json items defined by the schemas with the script generate_items_from_owl.py, which lives in the src/encoded/commands directory and is called from the top level directory as bin/owl-to-items

The script must currently be run locally. The script usage and parameters are described below.

bin/owl-to-items Disorder --env fourfront-cgap --load --post_report

Params and Options:

item_type - required Disorder or Phenotype

	–env - (default = local) - environment on which to generate updates eg. fourfront-cgap

	the specified environment will be queries for existing items of the specified types for comparison and if load option is used will be the target for insert loading.

NOTE: can use key and keyfile options in place of env to get an auth dict from a stored set of credentials.

–input - url or path to owlfile - overrides the download_url present in script ITEM2OWL config info set at the top of the script. Useful for generating items from a specific version of an ontology - the download_url specified in the config gets the current latest version of the owl file.

–outfile - relative or absolute path and filename to write output. If you use the load parameter and don’t specify an outfile you will be prompted if you wish to specify a file and as a safety backup will still generate a file with name item_type.json in the top level directory

–load - if param is used will use the load_data endpoint (as wrapped in the load_items function from load_items.py script) to update the database by loading the generated inserts.

–post_report - if param is used will post a Document item to the portal with name like ‘item_type_Update_date-time’ and the generated logfile as an attachment.

–pretty - will write output in pretty json format for easier reading

–full - will create inserts for the full file - does not filter out existing and unchanged terms - WARNING - use with care.

Processing Data Flow

	An RDF graph representation of the specified OWL ontology file is created. A specific version of an Ontology can be specified by URL or by filename (for a local owl file) - by default the URL specified in the script config gets the latest version.

	The graph is converted into a dict of term items keyed by their term_ids eg. MONDO:123456 or HP:123456 - the term is itself a dict consisting of fields whose values come from the owl. Item specific terms that come from the owl are specified in the config eg. for Phenotype the name_field is ‘phenotype_name’ and id_field is ‘hpo_id’

	The terms/items from the file are compared to the existing Items of the specified type from the database.

	posts are created for new Items that are not in the database

	patches are created for existing items that have fields that have changed

	patches to status=obsolete for existing items no longer in the file

	all the changes are logged and the json corresponding to the updates becomes part of the log

	if the load option is used the updates will be posted to the server using the load_data endpoint via the load_items function of load_items.py

	if the post_report option is used then the log will posted as a Document to the portal

Troubleshooting

The generation of updates and loading of inserts can be decoupled and run separately and the Document Item with the information about what happened can be generated and posted or edited manually if necessary.

Loading can be accomplished using bin/load-items script.

Possible most likely points of failure:

During generation of updates

	getting existing items from the database - this takes a few minutes and depends on connection to server

	downloading and processing the owl files - takes several minutes and usually depends on internet connection to external servers

During loading of updates

	typically if items fail to load there is a systematic reason that needs to be specifically resolved.

	connection issues can lead to partial loads - in this case the saved inserts should be loadable by load_items - the script is designed to avoid conflicts with partially loaded items.

Posting of logs

	this shouldn’t fail per se but:

	if the processing fails at any point above you may have a partial log and you should have info as to where the error occurred.

	you might want to update the Document by for example, concatenating generation and load logs for a decoupled run. Or appending the successful load logs in case of interrupted loads.

Getting previous versions of ontology files

	HPO http://purl.obolibrary.org/obo/hp/releases/YYYY-MM-DD/hp.owl

	MONDO currently the versionIRI link is giving a 404 - have submitted an issue to the MONDO github.

Index

Authentication/Authorization

Background reading: Pyramid’s security system [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/security.html].

I extend Pyramid’s built in ACL based security system with my pyramid_localroles [https://pypi.python.org/pypi/pyramid_localroles/] plugin so we can map permissions to roles (e.g. ‘role.lab_submitter’) rather than directly to users.

For more on roles and local roles see:

	http://docs.zope.org/zope2/zope2book/Security.html#different-levels-of-access-with-roles

	http://www.sixfeetup.com/blog/basic-roles-and-permissions-in-plone

	https://www.packtpub.com/books/content/plone-4-development-understanding-zope-security

Authentication

An authentication policy identifies who you are, returning a user id.
We use pyramid_multiauth to extract authentication from any of Persona [https://www.persona.org/], session cookies, or HTTP basic auth (access keys).

Authorization

From the authenticated user id, the groupfinder in authorization.py maps the user id to a number of “principals”, user or group identifiers.
We lookup the user object and add groups based on the properties:

	groups [<string>..] - global groups like ‘admin’. Generates: group.admin.

	submits_for: [lab..] - allow editing based on object.lab property. Generates: submits_for.<lab-uuid>.

	viewing_groups: [<string..>] - allow viewing of in progress data based on object.award.viewing_group (ENCODE, GGR, REMC.) Generates: viewing_group.ENCODE.

Views are protected by permissions (view, edit, etc.)

When you PUT to /experiment/ENCSR123ABC/ then Pyramid will traverse to the experiment object (see: Location aware resources [http://docs.pylonsproject.org/projects/pyramid/en/latest/narr/resources.html#location-aware]) and lookup a view for to PUT which is protected with the edit permission.

At this point my pyramid_localroles plugin steps in and extends the authenticated principals passed to the ACLAuthorizationPolicy (the global groups that apply across the whole site) with location aware local roles such as role.lab_submitter and role.viewing_group_member by reference to the __ac_local_roles__ method (base.py) of the context object which returns a mapping based on the context object’s ‘lab’ and award property, e.g:

{
 'submits_for.<context-lab-uuid>': ['role.lab_submitter'],
 'viewing_group.<context-award-viewing_group>'': ['role.viewing_group_member'],
}

The ACL authorization policy will then lookup the Access Control List on the experiment object (the ‘context’) by looking at its __acl__ property/method, and then the __acl__ property/methods of its parents (the /experiments collection and the root object.)
We define an __acl__ method on the EncodedRoot object (root.py), Collection and Item objects (base.py.)
The __acl__ method for an Item returns a different ACL list depending on the object’s ‘status’.
This way we allow lab submitters to edit their own ‘in progress’ objects but not ‘released’ objects.

Permissions

	add

	add_unvalidated (admin)

	edit

	edit_unvalidated (admin)

	expand (system)

	forms - who can see forms

	impersonate (admin)

	import_items (admin)

	index (system)

	list

	search

	submit_for_any (admin)

	view

	view_details - protection of user contact information

	view_raw (admin)

	visible_for_edit - hiding deleted child objects from edit

Permissions of items are tied to the statuses of items. We have 8 statuses for most items (there are exceptions like file and publication)

	Current : Everyone can view, admin can edit

	Released : Everyone can view, admin can edit

	Revoked : Everyone can view, admin can edit

	Deleted : Nobody can view, admin can edit

	Replaced : Everyone can view, admin can edit

	Obsolete : Nobody can view, admin can edit

	In review by lab : Lab members can view, submitter can edit

	submission in progress : Project members can view, submitter can edit

	Released to project : Project members can view

This gnu grep expression will extract a list of permissions (brew tap homebrew/dupes; brew install grep):

$ ggrep --no-filename -roP "(?<=permission[=(]['\"])[^'\"]+" src/ | sort | uniq

Database

The (encodeD) system uses a Postgres implementation of a document store of a JSON-LD object hierarchy. Multiple views of each document are indexed in Elasticsearch for speed and efficient faceting and filtering. The JSON-LD object tree can be exported from Elasticsearch with a query, converted to RDF and loaded into a SPARQL store for arbitrary queries.

PostgreSQL RDB

When an object is POSTed to a collection, and has passed schema validation, it is inserted into the Postgres object store, defined in storage.py.

There are 7 tables in the RDB. Of these, Resource represents a single URI. Most Resources (otherwise known as Items or simply “objects” are represented by a single PropSheet, but the facility exists for multiple PropSheets per Resource (this is used for attachments and files, in which the actual data is stored as BLOBS instead of JSON).

The Key and Link tables are indexes used for performance optimziation. Keys are to find specific unique aliases of Resources (so that all objects have identifiers other than the UUID primary key), while Links are used to track all the JSON-LD relationships between objects (Resources). Specifically, the Link table is accessed when an Item is updated, to trigger reindexing of all Items that imbed the updated Item.

The CurrentPropSheet and TransactionRecord tables are used to track all changes made to objects via transactions.

Booting Up Local Database

The bin/dev-servers command, required as part of the boot-up process (see the repo README [https://github.com/4dn-dcic/fourfront/blob/master/README.rst]) completely drops and restarts a local copy of the PostegreSQL server instance and database. Script posts all the objects in tests/data/inserts (plus /tests/data/documents as attachments). Then indexes them all in local elastic search. The server instance and ‘postgres’ database are both destroyed when you kill the dev-servers process.

This temporary PostgreSQL database exists in the filesystem in your Unix-based system’s /tmp/snovault/pgdata folder - which may be connected to as the hostname. The database created is named ‘postgres’, with an admin user also named ‘postgres’, and also should be accessible via localhost port 5432. No password is required.

By default, insert test data defined in Fourfront is loaded into the local database. See the inserts documentation for more information.

Backup & Loading of Production Database

Purpose

There may be many reasons to back-up live database data. At minimal, we should have periodic back-ups in case the production environment and database melt due to Murphy’s Law. Another reason may be to load live production data to local environment for more thorough testing when the test inserts might not be complete enough.

Prerequisites

Software

PgAdmin [https://www.pgadmin.org] is recommended for performing back-ups, as well as other PgSQL-centric tasks. PgAdmin provides a GUI for interacting with your database(s), and also allows you to explore the PropSheets and other database data. You also need to make sure you have Amazon’s **Elastic Beanstalk Command Line Interface** [http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html] (EB CLI), installed and configured with your Amazon key, as well as have a copy of the 4dn-encode private key in your /Users/YourName/.ssh folder. We’ll need to create a SSH tunnel through an Amazon EB/EC2 instance to our live production database - which is not accessible from the public internet for security reasons.

Configuration

Make sure your EB CLI is working and you’ve been able to SSH into an EC2 instance. You likely do this by running something like eb ssh -n 1 --custom "ssh -i /Users/alex/.ssh/4dn-encode.pem" where 4nd-encode.pem is your copy of the 4dn-encode private key. You’ll also need the hostname, port, username, database, and password (or connection string) of the RDS (Amazon term for database instance/server) where the live database is located, which may be obtained by logging into the AWS console and looking at the environment variables configured for the Elastic Beanstalk environment whose database you want to access. The hostname will likely resemble fourfront-webprod.co3gwj7b7tpq.us-east-1.rds.amazonaws.com:5432. We aren’t going to write what the username, database, and password will resemble in a public document.

Back It Up

Once you have your prerequisites, do the following:

	In a dedicated Terminal window, create an SSH tunnel via eb ssh command to the public RDS database. The command will look like:
eb ssh -n 1 --custom "ssh -i /Users/alex/.ssh/4dn-encode.pem -L 5999:fourfront-webprod.co3gwj7b7tpq.us-east-1.rds.amazonaws.com:5432".
By using the ‘-L’ argument, you create a tunnel from your local port 5999 to a remote host:port on the EC2 instance you’re connecting to. Replace path to your 4dn-encode private key and host:port of remote RDS accordingly. N.B. We need to use eb ssh rather than plain ssh because eb ssh tells Amazon to temporarily open port 22 (for SSHing) which would otherwise remain closed for security reasons.

	Open PgAdmin and, if not yet done, create a new ‘Server’ connection and call it “SSH to fourfront-webprod” or something relevant. Make sure the hostname is localhost:5999, as we’ll be utilizing the SSH tunnel we created in step 1. Use the database, username, and password that are defined in the AWS EB environment variables configuration.

	On the left tree-view pane of PgAdmin, should see the live RDS server, hopefully connected. Expand the server until see the database which have connected to. Right click on the database, and select “Backup…” from the drop-down menu.

	It is important to set the right backup options. Your filename isn’t important but should make sense – suggested format is YYYY-MM-DD-ENVNAME-I.sql, e.g. ‘2017-07-19-fourfrontwebprod-2.sql’. The following options are important (spread across both tabs)

	Select “Plain Text” for format.

	For encoding, select SQL_ASCII or similar. Your luck with UTF-8 may vary.

	Under “Dump Options” tab, ensure the following are set to “Yes”:

	Pre-Data

	Post-Data

	Data

	“Include DROP DATABASE statement”

	“Include CREATE DATABASE statement”

	“With OIDs”

	(Optional) “Use INSERT Commands”

	Other options may be left on default or adjusted to your needs.

[image: Initial Options]
 [https://i.gyazo.com/c9a68e09361991e04ed7b3be38147a02.png][image: Initial Options]
 [https://i.gyazo.com/4bec46071b30e6ad12d7db12dbef1d66.png]

	Click “Backup”. PgAdmin should pop up a little box on bottom right of their GUI showing time elapsed and then a success or error message. This should take about 30 seconds (or longer) as of 2017-07-06.

[image: https://i.gyazo.com/8947db89fe2739a5729d54cfce10958d.png]

	Navigate to your newly backed up SQL file. There it is!
Remember to disconnect the server and SSH tunnel when done.

Load It In

No point in backing up data if can’t get it to work again. Even if backing up for the sole sake of having back-ups, an untested back-up is no back-up at all.

If you backed up your .SQL file with no issues, you should be able to easily import the data back into production without issue by SSH tunneling to the production RDS again and running the .SQL file against the production database with the psql command. Don’t try this without reason, though, for the sake of production data stability.

If want to import into your local, there are a few extra steps needed, and a few things to keep in mind to keep your machine performant.

	With your local environment shut down, run bin/dev-servers development.ini --app-name app --clear --init --load as usual, but do not run bin/pserve yet. This will boot up your local PostgreSQL server and database but not launch the web app yet.

	In your favorite text editor *which can handle large files***, open the SQL file which you backed up earlier. Do a search & replace for the user (from EB environment variable) and replace all instances with ‘postgres’, to match the user used to connect to your local server. You can also search & replace all instances of the database name -**if- you want to change it from production database name (not suggested). Assuming your database name in SQL file is different than ‘postgres’ (database name of database created by local environment), you will be creating another database on the same local PostgreSQL server, alongside the database with your test inserts (initially loaded in bin/dev-servers and named ‘postgres’ (not to be confused with user name of same value)).

	Run psql -h /tmp/snovault/pgdata -U postgres -w postgres -a -f "/Users/alex/db_dumps/2017-06-29-fourfront-webdev-1.sql" to run SQL file against your PostgreSQL server instance, replacing the SQL file path and name with your own. This will create and populate another database with your backed up data, alongside the one created and populated with test inserts by bin/dev-servers command.

	Open up your development.ini file. Create a copy of it you’d like, or just adjust locally and don’t commit. Make the following changes:

	Comment out the existing sqlalchemy.url option, and replace it with sqlalchemy.url = postgresql://postgres@:5432/DATABASE_NAME?host=/tmp/snovault/pgdata where DATABASE_NAME is database name of the database you loaded in with your SQL backup file. This will ensure you connect to your backed-up database when you boot bin/pserve instead of the test inserts database from bin/dev-servers.

	Under both [composite:indexer] & [composite:file_indexer] sections, add the following: timeout = 64800. By default, the indexer runs once a minute, and on local machine, it runs for 45 minutes. While running, the indexer uses a lot of energy and is very likely to overheat laptops – especially if running continuously. It may drain your battery faster than you can charge it. Adjusting the auto-indexing timeout to 48 hours instead of one minute alleviates most of this pain except for initial indexing-upon-bootup.

	Save (or save copy of) adjusted development.ini file.

	Finally, run bin/pserve development.ini (if created a copy of development.ini, replace development.ini in command with your .ini filename). It should start indexing through tens of thousands of entries. Grab lunch while your laptop fans learn how to fly. Return to a local portal running with production data. Remember to revert your development.ini when want to load in test inserts instead of production data.

Afterthoughts

In lieu of PgAdmin, may use the command-line pg_dump tool to connect to production database (over SSH tunnel) and save output to SQL file. Ensure the same configuration (ASCII, no compression, CREATE/DROP DATABASE command, …) is set as for PgAdmin when running it.

Eventually, creating a shell or Python script to automate backup (and potentially import) may become a task, wherein the backup script could then perhaps be run on a scheduled basis.

Excel Submission

	Metadata and data can be submitted to our platform using Microsoft Excel WorkBooks that describe related items in separate sheets.

	This section provides detailed information on how to use the WorkBooks.

	You can check out the example WorkBook [https://github.com/hms-dbmi/Submit4DN/blob/master/Data_Files/Rao_et_al_2014/fieldsRao.xls?raw=true] we prepared for the data from Rao et. al. 2014 to familiarize yourself with the general structure.

	Based on the type of experiment(s) for which you plan to submit data, the data wranglers can provide you with an Excel WorkBook containing several WorkSheets.

	Each sheet corresponds to an Item type in our metadata database.

	The workbook provided should contain all the sheets that you may need for your submission.

	You can refer to this table for information on all the Item types available in the database.

	Each sheet should also contain all the data fields that can be submitted for that Item type.

	Depending on if you have submitted data before or if you are using shared reagents that have been submitted by other labs, you may not need to provide information on every sheet or in every field.

Organization of the Workbook

	Generally, it makes sense to begin with the left most sheet in the workbook as the sheets in a workbook are ordered so that Items that have fields that take a reference to another Item as their value appear ‘after’ i.e. to the right of that Item’s sheet in the workbook.

	A sheet for an Item starts with a row of field names.

	Absolutely required fields are marked with a leading asterisk (eg. *experiment_type). - failure to supply a value in these fields will cause an error

	The second row of the sheet indicates the type of the information expected for the fields.

	The third row includes a description of each of the fields.

	In some cases the values that you can submit for a particular field are constrained to a specific set of terms and when this is the case the possible values are shown in the fourth row.

	Any row that starts with “#” in the first column will be ignored, so you can add non-data rows for your own use.

	However, PLEASE NOTE THAT THE FIRST 2 ROWS OF A SHEET SHOULD NOT BE MODIFIED.

Excel Headers

	Field name

	Field type (string, number, array, embedded object)

	Description

	Additional info (comments and choices for fields with controlled vocabulary)

:raw-html-m2r:``

	You may notice that in some sheets there are additional commented rows that contain data values.

	These are rows corresponding to items that already exist in the database and can provide you with identifiers that you can reuse in your submission (see Referencing existing items).

	Only those items that either are associated with your lab or are already released to the public will appear in these commented data rows.

	Your data entry should begin at the first non-commented row.

Preparing Excel Workbooks

	A field can be one of a few different types;

	string

	number/integer

	array/list

	Item

	The type will be indicated in the second row.

:raw-html-m2r:``

	Most field values are strings:

	a term from a controlled vocabulary, i.e. from a constrained list of choices

	a string that identifies an Item

	a text description.

	If the field type is an array, you may enter multiple values separated by commas.

Basic field formats

[image: Basic fields]
Basic fields example

[image: Basic fields examples]

	There are some fields values that require specific formatting. These cases and how to identify them are described below.

Required string formatting

In some cases a field value must be formatted in a certain way or the Item will fail validation. In most cases tips on formatting requirements will be included in the Additional Info row of the spreadsheet.

Examples of these are

	Date fields - YYYY-MM-DD format.

	URLs -checked for proper URI syntax.

	patterns - checked against simple regular expressions (eg. a DNA sequence can only contain A, T, G, C or N).

	Database Cross Reference (DBxref) fields that contain identifiers that refer to external databases

	In many cases the values of these fields need to be in database_name:ID format. eg. an SRA experiment identifier ‘SRA:SRX1234567’ (see also Basic fields example above).

	In a few cases where the field takes only identifiers for one specific databases the ID alone can be entered - eg. ‘targeted_genes’ field of the Target Item enter gene symbols eg. PARK2, DLG1.

Linked item fields

	Some fields in a Sheet for an Item may contain references to another Item.

	The referenced Item may be of the same or different type.

	Examples of this type of field include the ‘biosource’ field in Biosample or the ‘files’ field in the ExperimentHiC.

	The ‘files’ field is also an example of a list field that can take multiple values.

	You can reference an item in the excel workbooks using one of four possible ways:

	lab-specific alias

	accession

	item-type-specific identifier

	UUID

More information about these four identifiers is provided in Using aliases.

Field(s) with subobjects

	Some Items can contain embedded sub-objects that are stored under a single Item field name but that contain multiple sub-fields that remain grouped together.

	These are indicated in the Item spreadsheet using a ‘.’ (dot) notation.

For example the “experiment_relations” field has 2 sub-fields called “relationship_type”, and “experiment”. In the spreadsheet field names you will see experiment_relations.relationship_type and experiment_relations.experiment.

	If the Item field is designed to store a list of embedded sub-objects, you can enter multiple sub-objects by manually creating new columns and appending incremented integers to the fields names for each new sub-object.

For example, to submit a total of three related experiments to an ExperimentHiC Item you would find the experiment_relations.relationship_type and experiment_relations.experiment columns, copy them and have total of 6 columns named:

and enter a valid relationship_type term and experiment identifier to each of the three pairs of columns.

:raw-html-m2r:``

Multiple linked columns for lists of embedded objects

[image: Embedded fields]

Referencing existing items

	Ways that you can reference items that already exist in the 4DN database in your spreadsheet submission is described here.
:raw-html-m2r:``

	In some cases information for existing items will be present in the Excel Work Sheets provided for your submission.

	You can also check the existing items from collection pages that list all of them.

	The links for item lists can be constructed by https://data.4dnucleome.org/ + plural-object-name (e.g. https://data.4dnucleome.org/biosamples/) and the identifiers that can be used for collections are referenced in this table.

:raw-html-m2r:``

Supplementary metadata files

To submit supplementary metadata files, such as pdfs or images, use the Image or Document schemas, and include the path of the files in the *attachment* column.
The path should be the full path to the supplementary file.

Experimental Replicate information

	All experiments must be part of a replicate set - even if it is a set containing only a single experiment.

	When preparing your submission you should determine how many replicate sets you will be submitting and create an entry - with an alias and preferably an informative description - for each set in the ExperimentSetReplicate sheet.

[image: ExperimentSetReplicate example]

	Then when entering information about individual experiments on the specific Experiment_ sheet you should:

	enter the alias for the replicate set to which the experiment belongs

	indicate the bioreplicate and technical replicate number for that experiment.

	In the example below the replicate set consists of five experiments categorized into one of two bioreplicates - bio_rep_no 1 and bio_rep_no 2, each of which contains three and two technical replicates, respectively.

[image: Experiments with replicate info example]

Submitting Excel Workbooks

	The 4DN DCIC website has an REST API for fetching and submitting data.

	In our Submit4DN package the import_data script utilizes an organized bundle of REST API commands that parse the Excel workbook and submit the metadata to the database for you.

	The get_field_info script that is also part of the package can be used to generate the Excel workbook templates used for submission for all or a selected set of worksheets.

	The package can be installed from pypi.

Installing the Submit4DN software

The Submit4DN package is registered with Pypi so installation is as simple as:

pip3 install submit4dn

If it is already installed upgrade to the latest version:

pip3 install submit4dn --upgrade

Submit4DN Source code

The source code for the submission scripts is available on github [https://github.com/4dn-dcic/Submit4DN].

Note if you are attempting to run the scripts in the wranglertools directory without installing the package, then in order to get the correct sys.path you need to run the scripts from the parent directory as modules using the -m flag.

python3 -m wranglertools.import_data filename.xls

Using import_data script for submission

	You can use import_data either to upload new items or to modify metadata fields of existing items.

	This script will accept the excel workbook you prepared, and will upload every new item in the sheets.

	This script is also used to upload data files to the 4DN data store - this is done in a separate step after your File metadata has been successfully uploaded.

Get access keys

You will need to generate access keys to submit data. How to get these is described here.

Workbook Submission

Testing your metadata

	Before actually updating the 4DN database you can check your spreadsheet for formatting and missing required data by doing a ‘dry run’.

	When you run the import_data script on your metadata excel workbook without the --update or --patchall arguments the system will test your data for compatibility with our metadata structure and report back to you any problems.

	The metadata will not be submitted to the database, so you can take advantage of this feature to test your excel workbook.

import_data My_metadata.xls

Uploading (posting) & Modifying (patching) Metadata

	When you submit your metadata, if a row in any sheet corresponds to a new item that has not previously been submitted to the 4DN database you will be POSTing that data via the REST API.

	Most of your entries in the first submission will be POSTs. To activate posting you need to include the --update argument to import_data.

import_data My_metadata.xls --update

	If you need to modify an existing item, you can use the patch function.

	To be able to match your item to the one on the server, a pre-existing identifier must be used in the spreadsheet.

	If you included an alias when you posted the item, you can use this alias to reference the existing item in the database – uuids, @ids, or accessions can also be used to reference existing items in the database.

	If you don’t use the --patchall argument when you run import_data and an existing entry is encountered, the script will prompt you ‘Do you wish to PATCH this item?’. You will be prompted for every existing item that is found in your workbook.

	The --patchall argument will allow automatic patching of each existing item, bypassing the prompts.

import_data My_metadata.xls --patchall

When your upload is aborted

	If for some reason the script fails in the middle of the upload process or errors are encountered for certain items, some items will have been posted while others will have not.

	When you fix the problem that caused the process to terminate, you can rerun the script using both the --patchall and --update arguments.

	Those items that had already been posted will be ‘patched’ using the data in the sheet and the items that had not been posted yet will be loaded.

import_data My_metadata.xls --patchall --update

	Functionality that will allow the deletion of all the data in a single field of an existing Item exists - however this can be a potentially dangerous operation. If you determine that you need this functionality please contact us at the DCIC for more information.

Uploading files with import_data

	The 4DN databased distinguishes two main categories of files:

	files that support the metadata, such as Documents or Images

	data files for which metadata is gathered and are specified in specific File items/sheets (eg. FileFastq).

	The first category can be uploaded along with the metadata by using the “attachment” fields in the excel workbook (eg. pdf, png, doc, …) as described previously.

	The second category includes the data files that are the results of experiments, eg. fastq files from HiC experiments.

	These data files are bound to a File item with a specific type eg, FileFastq that contains relevant metadata about the specific result file.

	Metadata for a file should be submitted as part of your experiment metadata submission as described above.

	The actual file upload to the 4DN file store in the cloud will happen in a subsequent submission step. NOTE that the filename is not part of the initial File metadata submission.

	This second step will be triggered by a successful metadata submission that passes review by the 4DN DCIC.

Data File upload

To upload your files:

	use the file submission excel sheet provided

	copy paste all your file (FileFastq) aliases from your metadata excel sheet to the aliases field of the file submission sheet

	Under filename enter the full paths to your files

	use import_data with the --patchall argument to start upload.

The DCIC automatically checks file md5sums to confirm successful upload and to ensure that there are no duplicate files in the database.

Tip Upload using ftp is also supported, however the process currently transfers the files to your hard drive, uploads them to our system, and then deletes the copy from your local hard drive. The files are processed sequentially so you need to have at least the amount of free space on your hard drive as the size of the largest file you wish to upload. In addition, you must include your ftp login credentials in the ftp url, which is definitely not a security best practice. For these reasons, if at all possible, it is recommended to install the Submit4DN package onto the server hosting the files to be submitted and use import_data as described above. However, if that is not an option then your ftp urls should be formatted as follows:

ftp://username:password@hostname/path/to/filename

To replace a file that has already been uploaded to 4DN - that is to associate a different file with existing metadata,

	in the filename field include the new path for the existing alias

	NOTE that every time you patch with a filename (even if it is the same filename) the file will be uploaded. Please use care when including a filename in your File metadata to avoid unnecessary uploads.

	We plan to avoid this issue in future releases by pre-checking md5sums.

Generate a new Template Workbook

To create the data submission xls forms, you can use get_field_info, which is part of the Submit4DN package.

The scripts accepts the following parameters:.

Examples generating a single sheet:

:raw-html-m2r:``

To get the complete list of relevant sheets in one workbook:

Getting Started

In order to make your data accessible, searchable and assessable you should submit as much metadata as possible to the 4DN system along with the raw files you have generated in your experiments.

These pages are designed to

	show you how to find out what kind of metadata we collect for your particular type of experiment

	introduce the mechanisms by which you can submit your metadata and data to the 4DN data portal.

For an overview of the metadata structure and relationships between different items please see the slides available on the metadata introductory page.

We have three primary ways that you can submit data to the 4DN data portal.

Web Submission

The online web submission forms are best used

	To submit one or a few experiments.

	To edit one or a few fields of an already submitted but not yet released item.

	As a hands on way to gain familiarity with the 4DN data model.

Documentation on how to get started with this interface is here.

Data Submission via Spreadsheet

The excel metadata workbooks

	Are useful for submitting metadata and data for several experiments or biosamples

	Can be used to make bulk edits of submitted but not yet released metadata

	Contain multiple sheets where each sheet corresponds to an object type and each column a field of metadata

	Can be generated using the Submit4DN software

	Are used as input to the Submit4DN software which validates submissions and pushes the content of the forms to our database.

Documentation of the data submission process using these forms can be found
here.

REST API

For both meta/data submission and retrival, you can also access our database directly via the REST-API.

	Data objects exchanged with the server conform to the standard JavaScript Object Notation (JSON) format.

	Our implementation is analagous to the one developed
by the ENCODE DCC [https://www.encodeproject.org/help/rest-api/].

If you would like to directly interact with the REST API for data submission see the documentation here.

Notes on Experiments and Replicate Sets

Biological replicates

	The 4DN Consortium strongly encourages that experiments be performed using at least two different preparations of the same source biomaterial - i.e. bioreplicates.

	When submitting metadata you should submit two Experiments that use the same Biosource, but have different Biosamples.

	In many cases the only difference between Biosamples may be the dates at which the cell culture or tissue was harvested.

	The experimental techniques and parameters will be shared by all experiments of the same bioreplicate set.

Technical replicates

	Multiple sequencing runs performed at different times using a library prepared from the same Biosample and the same methods up until the sample is sent to the sequencer - i.e. technical replicates.

Submitting replicate information

	The replicate information is stored and represented as a set of experiments that includes labels indicating the replicate type and replicate number of each experiment in the set.

	The mechanism that you use to submit your metadata will dictate the type of item that you will associate replicate information with

	In excel workbooks bioreplicate and technical replicate numbers are entered in the Experiment sheet

	Using the API you directly associate the replicate information (i.e. replicate number and the experiment identifier) with the ExperimentSetReplicate objects.

	Using the web submission interface the replicate numbers and linked experiments are added from the ExperimentSetReplicate page

	In the database the information will always end up directly associated with ExperimentSetReplicate objects.

	Specific details on formatting information regarding replicates is given in the Spreadsheet Submission page.

	When submitting using the REST API you should format your json according to the specifications in the schema as described in the REST API page.

Referencing existing objects

Using aliases

Aliases are a convenient way for you to refer to other items that you are submitting or have submitted in the past.

	An alias is a lab specific identifier that you can assign to any item

	An alias takes the form of lab:id_string eg. parklab:myalias.

	An alias must be unique within all items.

	Generally it is good practice to assign an alias to any item that you submit

	If you use the Online Submission Interface to create new items designating an alias is the first required step.

	Once you submit an alias for an Item then that alias can be used as an identifier for that Item in the current submission as well as in any subsequent submission.

Other ways to reference existing items

You don’t need to use an alias if you are referencing an item that already exists in the database.

Any of the following can be used to reference an existing item in an excel sheet or when using the REST-API.

	accession - Objects of some types (eg. Files, Experiments, Biosamples, Biosources, Individuals…) are accessioned, e.g. 4DNEX4723419.

	uuid - Every item in our database is assigned a “uuid” upon its creation, e.g. “44d3cdd1-a842-408e-9a60-7afadca11575”.

	type/id in a few cases object specific identifying terms are also available, eg. award number for awards, or lab name for labs. (see table below)

	Object

	Field

	type/ID

	ID

	Lab

	name

	/labs/peter-park-lab/

	peter-park-lab

	Award

	number

	/awards/ODO1234567-01/

	ODO1234567-01

	User

	email

	/users/test@test.com/

	test@test.com

	Vendor

	name

	/vendors/fermentas/

	fermentas

	Enzyme

	name

	/enzymes/HindIII/

	HindIII

	Construct

	name

	/constructs/GFP-H1B/

	GFP-H1B

 Higlass Visualization

Higlass Visualization

This document explains the end to end behavior of the visualization endpoint.

API Call

Make a POST request to add_files_to_higlass_viewconf/. The CGAP server will return the viewconf used to create
Higlass Items.

Payload

higlass_viewconfig

A base viewconf to add the files to.
If not provided or null, the server uses a default “blank” viewconf.

files

A list of file accessions. Each file will be added to the viewconf.

height

Expected height for all of the tracks. If not provided, the default height is 600 pixels.

firstViewLocationAndZoom

An array of 3 numbers. These correspond to the coordinates of the first view, as well as its zoom level.

The first 2 numbers indicate the center of the highlighted data, while the final number notes how zoomed in the view is.

The zoom level relies on d3 library’s implementation, so if you want to experiment with it, find some already existing viewconfs and edit the location locks.

If not provided, the view will point at the center of the domain, with the zoom level covering the entire domain range.

remove_unneeded_tracks

If there are no 2D Higlass tracks (for example, no mcool files,) and this to true, all of the left side tracks will be removed.
By default, this is false.

Example payload

{
"files": ["4DNFIWG6CQQA", "4DNFIZJB62D1", "4DNFIWQJFZHS", "4DNFI9UM7MDC", "4DNFIZMTKWDI", "4DNFIC624FKJ"]
}

Creates a new viewconf. All of the files are checked to make sure they have the same genome assembly. Here’s a sample output.

{
 "success": true,
 "errors": "",
 "new_viewconfig": {
 <truncated>
 },
 "new_genome_assembly": "GRCh38"
}

</details>

You still need to POST or PATCH the new_viewconf object to higlass-view-configs/ to create/edit a Higlass item.

Viewconf limits

1D tracks only

	Gene annotation files are always first, chromsizes files are always last

	Otherwise, each track is added to the top in order they are listed.

	There are no left side tracks (unless the view had a 2D track before. Use remove_unneeded_tracks in that case.)

Single 2D track

	The 1D tracks on top will be mirrored on the left side.

	Only 1 2D track in a given view. It will be in the center of the viewconf.

	A chromsizes grid is added on top of the 2D track.

Multiple 2D tracks

	Only 1 2D track per view.

	Adding another will copy the first view, replacing the track.

	All views are “locked” so scrolling or zooming one view will scroll/zoom the others.

	No more than 6 views per viewconf. If there are more than 2, the view will create a second row to add the third view.

Errors and Issues

All files must have a uuid, higlass_uid and genome assembly

The POST still returns a 200 status, but the errors field will be non-empty and success will be false.

Make sure all of files have the same genome assembly

If the files have mismatched genome assemblies, you’ll get an error.

{
 "success": false,
 "errors": "Files have multiple genome assemblies: GRCh38: 4DNFIWG6CQQA, 4DNFIZJB62D1; GRCm38: 4DNFIU37KWB1, 4DNFIU37KWB1, 4DNFIU37KWB1, 4DNFIU37KWB1, 4DNFIU37KWB1, 4DNFIU37KWB1",
 "new_viewconfig": null,
 "new_genome_assembly": null
}

CGAP display adjustment

By default, Higlass Items are 600 pixels high. But Experiment Set pages allow 300 pixels for Higlass Items. Front end javascript will dynamically resize a copy of the viewconfig to fit.

	2D tracks adjust their height automatically, so they are not modified.

	If there are 1D and 2D tracks in the viewconf, the 2D track is set to 2/3 of the container height.

	If there are more than 2 views, the container halves the relative amount of height to work with.

	1D tracks will be scaled so they maintain the relative amount of space in the new container.

Foursight Higlass checks

Foursight uses the CGAP endpoint to create and update HiglassItems.
All of the checks work on a file or experiment set.

Foursight finds reference files

Foursight reads the genome assembly from the source files, and gets the relevant chromsizes and beddb files.

File Higlass Items

Foursight looks for files with Higlass uids and genome assemblies.
There are additional queries used to further filter, based on the Foursight check.

With the file and the reference files Foursight calls the CGAP API, gets the new_viewconf and creates a new Higlass Item.
The File’s static_content section is updated so it refers to the uuid of the Higlass item.

Experiment Set (Processed Files) Higlass Items

Foursight looks for ExpSets with:

	A processed_files section with files with Higlass uids and genome assemblies.

	At least one experiments_in_set object with a processed_files section with files with Higlass uids and genome assemblies.

And then applies queries to filter further, based on the Foursight check.

All of the files in the processed_files section with Higlass uids and genome assemblies are combined with the reference files to make or update a Higlass Item.
The ExpSet’s static_content is updated so the tab:processed-files section uses the new Higlass Item.

Experiment Set (Other Processed Files aka Supplementary Files) Higlass Items

The opf section is a bit more complicated because each group has its own Higlass Item.

Foursight looks for ExpSets with a other_processed_files section. For each group it sees which groups are worth updating:

	There are files with Higlass uids and a genome assembly

	There is no Higlass Item for this group

	OR The files have been updated after the Higlass Item (the Higlass Item is at least minutes_leeway minutes older)

Each opf group in the ExpSet (not the experiments_in_set.other_processed_files section) is updated.

{
 "files" : ["<list of file accessions, OR an empty array, see below>"],
 "title" : "<Name of the opf group>"
 "higlass_view_config" : "<higlass item uuid>"
}

If the files come from experiments_in_set.other_processed_files, the files array is empty. Otherwise it contains all of the experiment_set.other_processed_files used.

 Loading Inserts

Loading Inserts

XXX: Needs updating with CGAP info

Fourfront has a set of json insert files that are used to load data in various environments. These are loaded using bin/load-data, which calls the functions defined in src/encoded/loadxl.py.

The behavior of load-data depends on the current Fourfront environment and the snovault.load_test_data setting in the used .ini file. This documentation goes into some detail on those options; to read about which inserts are used, see this documentation.

bin/load-data

Main command for loading insert data. Example usage is:

The arguments are as follows:

	config_uri: required. Path to the .ini configuration file

	–app-name: Pyramid app name in configfile, usually “app”

	–access-key: if “s3” (default), will create and upload a new admin access key to s3. Otherwise, if “local”, will build a local keypairs.json file and add the key to that

	–drop-db-on-mt: if True and the Fourfront environment is “fourfront-mastertest”, will drop the DB before loading inserts for a fresh test DB

	–prod: boolean flag that must be used to run load inserts on either “fourfront-webprod” or “fourfront-webprod2” environments

App configuration

The load function used is defined under snovault.load_test_data in the .ini configuration file. For local usage, this is development.ini and the default load function used is encoded.loadxl:load_local_data. For production environments, the value of this setting should be set as the LOAD_FUNCTION environment variable. This will probably be either load_prod_data for staging/data environments or load_test_data for test environments. Again, these configuration values correspond to the functions used in loadxl.py.

 Invalidation

Invalidation

Keeping elasticsearch in sync.

The /_indexer wsgi app (es_index_listener.py) drives the incremental indexing process. When a new transaction is notified by postgres (or after 60 seconds) it calls the /index view (indexer.py) which works out what needs to be reindexed. The actual reindexing happens in parallel in multiprocessing subprocesses (mpindexer.py.)

When rendering a response, we record the set of embedded_uuids and linked_uuids used.

	embedded_uuids are those objects embedded into the response or whose properties have been consulted in rendering of the response. Any change to one of these objects should cause an invalidation. (See Item.__json__.)

	linked_uuids are the objects linked to in the response. Only changes to their url need trigger an invalidation. (See Item.__resource_url__.)

When modifying objects, event subscribers keep track of which objects where updated and their resource paths before and after the modification. This is used to record the set of updated_uuids and renamed_uuids in the transaction log. (See indexing.py.)

The indexer process listens for notifications of new transactions. With the union of updated_uuids and union of renamed_uuids across each transaction in the log since its last indexing run, it performs a search for all objects where embedded_uuids intersect with the updated_uuids or linked_uuids intersect with the renamed_uuids. The result is the set of invalidated objects which must be reindexed in addition to those that were modified (recorded in updated_uuids.)

Where an object’s url depends on other objects – Page whose url includes its ancestors in its path, or Target whose url includes a property from its referenced organism – we must ensure that linked_uuid dependencies to those other objects are recorded in addition the object itself when linked. (See Page.__resource_url__ and Target.__resource_url__.)

Total Reindexing

Cases can arise where a total reindexing needs to be triggered.
>curl -XDELETE ‘localhost:9200/encoded/meta/indexing’ will specifically force it.

localhost:9200/encoded/meta/indexing stores the document that keeps track of incremental indexing. The indexer script checks for that document when deciding between full index and indexing only the recently invalidated documents. It has the benefit of keeping the old-yet-to-be-indexed data online, especially if it’s a production instance.

Alternatively, >curl -XDELETE ‘http://localhost:9200/encoded/’ will delete the entire index along with the mapping information for schema objects. Although it does trigger indexing, missing mapping information makes the documets unsearcheable. Mapping in elasticsearch describes how each field of each object should be tokenized/analyzed/indexed for searching.

Back references (rev-links)

In a parent-child relationship, it is the child object that references the parent object. A parent response often renders a list of child objects, and that list my be filtered to remove deleted or unpublished child objects.

We want to ensure that parent responses are invalidated when a child object’s state changes, so that it would now be included in its parent’s list of child objects when it was not before. A parent response must therefore include all potentially included child objects in its embedded_uuids, which is done by accessing the child status property through the Item.__json__ method.

We must also invalidate a parent response when a new child is added (either a new object of changing the parent referenced.) This is done adding the parent uuid to the list of updated_uuids recorded on the transaction adding/modifying the child. (See indexing.py invalidate_new_back_revs.)

SEE ALSO rev-links.md for more information about how to setup rev links

Isolation level considerations

Postgres defaults to its lowest isolation level, READ COMMITTED: http://www.postgresql.org/docs/9.3/static/transaction-iso.html

For invalidation of back references of new child objects only READ COMMITTED isolation is necessary as invalidated back references are calculated from the updated objects properties.

However, writes must be at least REPEATABLE READ in order for overalapping PATCHes to apply safely.

During recovery indexing uses READ COMMITTED isolation. Indexed objects may be internally inconsistent if there are concurrent updates to embedded objects. But indexing is still eventually consistent as any concurrent update will invalidate the object and it will be reindexed later.

To avoid internal possible internal inconsistancies of indexed objects, SERIALIZABLE isolation is required. It is used once it becomes available when recovery is complete.

 Development Troubleshooting

Development Troubleshooting

NOTE

If you had problems with your local deployment, and found solutions to them, please document them here.
Please include software versions, and date

20190218 Pillow 3.1.1 install error on Mac 10.14.3, Xcode 10.1 (command line tools 10.1 10B61) - Koray

--enable-zlib requested but zlib not found, aborting

I switched to Mojave, decided to do a fresh install of ff, and updated Xcode from appstore, run xcode-select --install to update (you might need to restart computer after installing xcode, run xcode, and agree to the terms).
It turns out the new (Mojave) Xcode Command Line tools no longer installs needed headers in /include.
This did the trick for me

sudo installer -pkg /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg -target /

for more info
https://github.com/pyenv/pyenv/issues/1219

20190219 Server does not start on Mac 10.14.3, Xcode 10.1 (command line tools 10.1 10B61) - Koray

I and Carl tried various things (rebuilds, re-linking brew …) but it did not help. At the end I did the following, I guess deleting the folder was the key.

	delete all brew elastic search versions

	delete the folder /usr/local/etc/elasticsearch/

	reinstall elasticsearch

	rebuild

 Object Lifecycle

Object Lifecycle

Retrieval (GET)

Data can be retrieved from the database in one of a few “frames” which specify how much data is in the returned object.
The object and embedded frames are indexed in elasticsearch, the page properties are applied at “GET”. Usually you will specify format=json (or set content-type: application/json) if you wish to return a JSON object directly.

	frame=raw

Objects are stored in the DB “raw” - with only the properties that are submitted with links as uuids.

	frame=object

This is the raw object with additional “@properties” (@id, @type) and calculated properties (defined in python code “types” package).

	frame=edit

This is the frame=object without calculated properties

	frame=embedded

This is the frame=object object with all the embedded properties (also specified in the “types” package)

	frame=page

This is the default object returned if frame is not specified. It is the frame=embedded object with several UI and form properties added including @context, aggregated items, validation errors, and user actions.

Submission (POST)

POST /biosample:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],
 "award": "my-award",
 "lab": "my-lab",
 "source": "some-source",
 "organism": "human"
}

Validation

	Does submission conform to schema?

	Structural conformance

	Link resolution

	Value format validation

	Permission checking

Link resolution

Links are resolved relative to their configured base url, normally their collection.
Absolute paths and UUIDs are also valid, as are aliases and other uniquely identifying properties:

{
 "award": "fae1bd8b-0d90-4ada-b51f-0ecc413e904d",
 "lab": "b635b4ed-dba3-4672-ace9-11d76a8d03af",
 "source": "1d5be796-8f80-4fd4-b6c7-6674318657eb",
 "organism": "7745b647-ff15-4ff3-9ced-b897d4e2983c"
}

Default values

Static and calculated defaults:

{
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",
 "submitted_by": "bb319896-3f78-4e24-b6e1-e4961822bc9b"
}

Storage

Resource record created for uuid with item_type:

uuid: "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
item_type: "biosample"

Raw properties:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],

 "award": "fae1bd8b-0d90-4ada-b51f-0ecc413e904d",
 "lab": "b635b4ed-dba3-4672-ace9-11d76a8d03af",
 "source": "1d5be796-8f80-4fd4-b6c7-6674318657eb",
 "organism": "7745b647-ff15-4ff3-9ced-b897d4e2983c",

 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",
 "submitted_by": "bb319896-3f78-4e24-b6e1-e4961822bc9b"
}

Rows are inserted to enforce unique constraints:

keys: [
 ("accession", "ENCBS000TST"),
 ("alias", "my-lab:sample1"),
]

and to maintain referential integrity:

links: [
 ("award", "fae1bd8b-0d90-4ada-b51f-0ecc413e904d"),
 ("lab", "b635b4ed-dba3-4672-ace9-11d76a8d03af"),
 ("source", "1d5be796-8f80-4fd4-b6c7-6674318657eb"),
 ("organism", "7745b647-ff15-4ff3-9ced-b897d4e2983c"),
 ("submitted_by", "bb319896-3f78-4e24-b6e1-e4961822bc9b"),
]

	Also:

	
	additional property sheets

	transaction logging

	object versioning

Rendering

* raw properties
 -> link canonicalization
 -> calculated properties
 -> embedding
 -> page expansion

Link canonicalization

Specified in the schema. UUID’s are converted to resource paths.

{
 "award": "/awards/my-award/",
 "lab": "/labs/my-lab",
 "source": "/sources/some-source/",
 "organism": "/organisms/human/",
 "submitted_by": "/users/me/",
}

Calculated properties

These include the JSON-LD boilerplate along with other dynamically calculated properties such as a consistently formatted title and reverse links pulled from the links table.

{
 "@id": "/biosamples/ENCBS000TST/",
 "@type": ["biosample", "item"],
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "name": "ENCBS000TST",
 "title": "Biosample ENCBS000TST (human)",
 "characterizations": [],
}

JSON result

Combining gives us:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],
 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",

 "award": "/awards/my-award/",
 "lab": "/labs/my-lab",
 "source": "/sources/some-source/",
 "organism": "/organisms/human/",
 "submitted_by": "/users/me/",

 "@id": "/biosamples/ENCBS000TST/",
 "@type": ["biosample", "item"],
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "name": "ENCBS000TST",
 "title": "Biosample ENCBS000TST (human)",
 "characterizations": [],
}

This is the representation returned within the POST/PUT/PATCH result and when specifying frame=object within the query parameters.

Embedding

Each object type specifies its embedded properties, for biosample we have:

[
 "donor.organism",
 "submitted_by",
 "lab",
 "award",
 "source",
 "treatments.protocols.submitted_by",
 "treatments.protocols.lab",
 "treatments.protocols.award",
 "constructs.documents.submitted_by",
 "constructs.documents.award",
 "constructs.documents.lab",
 "constructs.target",
 "protocol_documents.lab",
 "protocol_documents.award",
 "protocol_documents.submitted_by",
 "derived_from",
 "part_of",
 "pooled_from",
 "characterizations.submitted_by",
 "characterizations.award",
 "characterizations.lab",
 "rnais.target.organism",
 "rnais.source",
 "rnais.documents.submitted_by",
 "rnais.documents.award",
 "rnais.documents.lab",
 "organism"
]

The specified links are then replaced with objects:

{
 "biosample_type": "DNA",
 "biosample_term_id": "UBERON:349829",
 "aliases": ["my-lab:sample1"],
 "accession": "ENCBS000TST",
 "date_created": "2014-01-20T10:30:00-0800",
 "status": "IN PROGRESS",

 "award": {
 "@id": "/awards/my-award/",
 "@type": ["award", "item"],
 "uuid": "fae1bd8b-0d90-4ada-b51f-0ecc413e904d",
 "name": "my-award"
 },

 "lab": {
 "@id": "/labs/my-lab",
 "@type": ["lab", "item"],
 "uuid": "b635b4ed-dba3-4672-ace9-11d76a8d03af",
 "name": "my-lab",
 "title": "My Lab"
 },

 "source": {
 "@id": "/sources/some-source/",
 "@type": ["source", "item"],
 "uuid": "1d5be796-8f80-4fd4-b6c7-6674318657eb",
 "name": "some-source",
 "title": "Some source"
 },

 "organism": {
 "@id": "/organisms/human/",
 "@type": ["organism", "item"],
 "uuid": "7745b647-ff15-4ff3-9ced-b897d4e2983c",
 "name": "human",
 "scientific_name": "Homo sapiens",
 "taxon_id": "9606",
 },

 "submitted_by": {
 "@id": "/users/me/",
 "@type": ["user", "item"],
 "uuid": "bb319896-3f78-4e24-b6e1-e4961822bc9b",
 "title": "My Name",
 "lab": "/labs/my-lab"
 },

 "@id": "/biosamples/ENCBS000TST/",
 "@type": ["biosample", "item"],
 "uuid": "7c245cea-7d59-45fb-9ebe-f0454c5fe950"
 "name": "ENCBS000TST",
 "title": "Biosample ENCBS000TST (human)",
 "characterizations": [],
}

This embedded object is indexed in elasticsearch to allow searching and faceting across the embedded values.
It is returned when when specifying frame=embedded within the query parameters.

Page expansion

The final step in the rendering pipeline is applied only to single items, not to search results.
It provides the opportunity to add properties that are restricted or tailored to certain users, such as user actions:

{
 "actions": [
 {
 "profile": "/profiles/biosample.json",
 "href": "/biosamples/ENCBS000TST/#!edit",
 "name": "edit",
 "title": "Edit"
 },
 {
 "profile": "/profiles/biosample.json",
 "href": "/biosamples/ENCBS000TST/#!edit-json",
 "name": "edit-json",
 "title": "Edit JSON"
 }
]
}

 Development Overview

Development Overview

This document does not contain installation or operating instructures. See README.rst for that.

Encoded is a python/javascript application for storing, modifying, retrieving and displaying the metadata (as JSON objects) for the ENCODE [http://www.encodeproject.org/] project.
The application was designed specifically to store metadata for high-throughput genomics experiments, but the overall architecture is suitable for any set of highly linked objects.

The “deep” backend is a simple Postgres object database. The relational database does not store any specific information about the objects but simply tracks transactions and keys. CRUD (Create/Read/Update/Delete) in this database is governed by a python Pyramid [http://www.pylonsproject.org/] app. This python app can stand alone and provide JSON objects via GET directly from the database.

Elasticsearch [http://www.elasticsearch.org/] is used to deeply and robustly index the entire object store and provide extremely fast read access and powerful search capability.

The Browser accessible frontend is written in ReactJS [http://facebook.github.io/react/] and uses the same Pyramid [http://www.pylonsproject.org/] URL dispatch as the backend, but converts the GET request JSON into XHTML for viewing in a Web Browser.

SOURCE CODE ORGANIZATION

* WARNING THIS IS OUT OF DATE SINCE snovault SPLIT OFF – REWRITE WHEN IT’S TOTALLY DIVORCED *

	
	Root - the root directory contains configuration files and install scripts along with other accessory directories

	
	bin - command line excutables (see src/commmands) from buildout (see PyramidDocs [http://docs.pylonsproject.org/en/latest/])

	develop & develop-eggs - source and python eggs (created by buildout)

	docs - documentation (including this file)

	eggs - Python dependencies from PyPi (created by buildout)

	etc - apache config and other admin files

	node_modules - JS (Node) dependencies from npm (created by buildout)

	parts - wsgi interfaces and ruby dependencies (gems) (created by buildout)

	scripts - cron jobs

	
	src directory - contains all the python and javascript code for front and backends

	
	commands - the python source for command line scripts used for synching, indexing and other utilities independent of the main Pyramid application

	schemas - JSON schemas (JSONSchema [http://json-schema.org/], JSON-LD [http://json-ld.org/]) describing allowed types and values for all metadata objects

	static - Frontend JS (components), SCSS/CSS (HTML styling), images, fonts and frontend JS libraries

	tests - Unit and integration tests

	upgrade - python instructions for upgrading old objects stored to the latest schema

	views - business logic for dispatching URLs and producing the correct JSON

BACKEND

	Application (responds to web requests) - the main config files are *.ini in the root encoded directory.

Guts

views

The guts of the web application are in the views package. Views.views defines the Item and Collection classes that the web app will respond to via URLs like /{things}/ (returns a Collection of Things) and /{things}/{id} (retuns a Thing).

	Other modules in the views package correspond to non-core views that the app will respond to.

	user.py - special user objects are special
access_key.py - generation/modification of access keys for programatic access
search.py - constructs ES query and passes though to :9200

snovault.py

snovault.py defines the core Collection and Item classes which are the python representation of linked JSON objects and groups (collections) of linked JSON objects. It contains the business logic for updating JSON objects via PATCH and the recursive GETs necessary for embedded objects.

AuthZ

	authentication.py

	authorization.py

	persona.py

	
	JSON data schema

	
	definition

	Each object type has a .json schema file in /schemas. The objects are linked and embedded within each other by reference, forming a graph structure. “Mixins” are sub-schemas included in more than one object type definition. Each schema file is versioned and mapping an object from an older schema to a new one is called upgrading

	validation

	Objects are validated as they are POSTed or PATCHed to the application (via HTTP). Not sure when/how the validation is hooked in

	upgrading

	No idea

	linked and embedded objects

	Sorcery

	
	Postgres Storage

	
	Loading

	Elasticsearch & Indexing

FRONTEND

The pyramid app handles all URL dispatch and fetches JSON objects from Elasticsearch (or optionally, the database directly). These can be either individual objects or Collections (arrays) of objects. The objects can either be “flat” with no linked objects embedded, or with some or all linked objects embedded in the response.

The scope of embedding is decided on an object-by-object bases, listed in the /src/encoded/types directory. Each object has an ‘embedded’ list defined, which dictates what objects will be embedded in the elasticsearch indexing process. Whole objects can be embedded or specific fields of objects. For objects (with linkTo’s in the schema) are not explicitly added to the ‘embedded’ list, three fields will automatically included, regardless of whether or not these are calculated properties. These are link_id, display_title, and uuid.

FOR MORE INFO ON EMBEDDING, reference docs/embedding-and-indexing.rst in snovault.

	renderers.py - code that determines whether to return HTML or JSON based on request, as well as code for starting the node subprocess renderer.js which converts the ReactJS pages into XHTML.

Use of NodeJS

About ReactJS

Component Pages

HTML pages are written in Javascript using JSX [http://jsx.github.io] and ReactJS [http://facebook.github.io/react/]. These files are in src/static/components.
Each object type has a component which describes how both the individual item and the collection pages are rendered. Other pages include home and search. JSX [http://jsx.github.io] allows the JS file itself to serve like an HTML template, similar to other web frameworks.

Boilerplate and Parent Classes

	app.js

	globals.js

	mixins.js

	errors.js

	home.js

	item.js

	collection.js

	fetched.js

	edit.js

	testing.js

User Pages (Templates)

	index.js

	antibody.js

	biosample.js

	dataset.js

	experiment.js

	platform.js

	search.js

	target.js

Views and Sections (Templates)

	dbxref.js

	navbar.js

	footer.js

API

Parameters (to be supplied in POST object or via GET url parameters):

	datastore=(database|elasticsearch) default: elasticsearch

	format=json Return JSON objects instead of XHTML from browser.

	limit=((int)|all) return only some or all objects in a collection

	
	Searching

	
	

 Updating Disorders and Phenotypes

Updating Disorders and Phenotypes

Disorder and Phenotype Items correspond to ontology terms from the MONDO or HPO ontologies.

The Items are converted from owl ontology files to our json items defined by the schemas with the script generate_items_from_owl.py, which lives in the src/encoded/commands directory and is called from the top level directory as bin/owl-to-items

The script must currently be run locally. The script usage and parameters are described below.

bin/owl-to-items Disorder --env fourfront-cgap --load --post_report

Params and Options:

item_type - required Disorder or Phenotype

	–env - (default = local) - environment on which to generate updates eg. fourfront-cgap

	the specified environment will be queries for existing items of the specified types for comparison and if load option is used will be the target for insert loading.

NOTE: can use key and keyfile options in place of env to get an auth dict from a stored set of credentials.

–input - url or path to owlfile - overrides the download_url present in script ITEM2OWL config info set at the top of the script. Useful for generating items from a specific version of an ontology - the download_url specified in the config gets the current latest version of the owl file.

–outfile - relative or absolute path and filename to write output. If you use the load parameter and don’t specify an outfile you will be prompted if you wish to specify a file and as a safety backup will still generate a file with name item_type.json in the top level directory

–load - if param is used will use the load_data endpoint (as wrapped in the load_items function from load_items.py script) to update the database by loading the generated inserts.

–post_report - if param is used will post a Document item to the portal with name like ‘item_type_Update_date-time’ and the generated logfile as an attachment.

–pretty - will write output in pretty json format for easier reading

–full - will create inserts for the full file - does not filter out existing and unchanged terms - WARNING - use with care.

Processing Data Flow

	An RDF graph representation of the specified OWL ontology file is created. A specific version of an Ontology can be specified by URL or by filename (for a local owl file) - by default the URL specified in the script config gets the latest version.

	The graph is converted into a dict of term items keyed by their term_ids eg. MONDO:123456 or HP:123456 - the term is itself a dict consisting of fields whose values come from the owl. Item specific terms that come from the owl are specified in the config eg. for Phenotype the name_field is ‘phenotype_name’ and id_field is ‘hpo_id’

	The terms/items from the file are compared to the existing Items of the specified type from the database.

	posts are created for new Items that are not in the database

	patches are created for existing items that have fields that have changed

	patches to status=obsolete for existing items no longer in the file

	all the changes are logged and the json corresponding to the updates becomes part of the log

	if the load option is used the updates will be posted to the server using the load_data endpoint via the load_items function of load_items.py

	if the post_report option is used then the log will posted as a Document to the portal

Troubleshooting

The generation of updates and loading of inserts can be decoupled and run separately and the Document Item with the information about what happened can be generated and posted or edited manually if necessary.

Loading can be accomplished using bin/load-items script.

Possible most likely points of failure:

During generation of updates

	getting existing items from the database - this takes a few minutes and depends on connection to server

	downloading and processing the owl files - takes several minutes and usually depends on internet connection to external servers

During loading of updates

	typically if items fail to load there is a systematic reason that needs to be specifically resolved.

	connection issues can lead to partial loads - in this case the saved inserts should be loadable by load_items - the script is designed to avoid conflicts with partially loaded items.

Posting of logs

	this shouldn’t fail per se but:

	if the processing fails at any point above you may have a partial log and you should have info as to where the error occurred.

	you might want to update the Document by for example, concatenating generation and load logs for a decoupled run. Or appending the successful load logs in case of interrupted loads.

 REST API

REST API

The 4DN-DCIC metadata database can be accessed using a Hypertext-Transfer-Protocol-(HTTP)-based, Representational-state-transfer (RESTful) application programming interface (API) - aka the REST API. In fact, this API is used by the import_data script used to submit metadata entered into excel spreadsheets as described on this page. This API was developed by the ENCODE [https://www.encodeproject.org/] project so if you have experience retrieving data from or submitting data to ENCODE use of the 4DN-DCIC API should be familiar to you. The REST API can be used both for data submission and data retrieval, typically using scripts written in your language of choice. Data objects exchanged with the server conform to the standard JavaScript Object Notation (JSON) format. Libraries written for use with your chosen language are typically used for the network connection, data transfer, and parsing of data (for example, requests and json, respectively for Python). For a good introduction to scripting data retrieval (using GET requests) you can refer to this page [https://www.encodeproject.org/help/rest-api/] on the ENCODE [https://www.encodeproject.org/] web site that also has a good introduction to viewing and understanding JSON formatted data.

Connecting to the server

Your script will need to use an access key and secret that you can obtain by following these instructions to connect to the server. Exactly how you format and pass the connection information to the server depends on your scripting language and the libraries that you use with it.

Base URL for submitting and fetching data are: https://data.4dnucleome.org/

You can refer to the FDN_key and FDN_connection classes in the ``fdnDCIC.py` library <https://github.com/4dn-dcic/Submit4DN/blob/master/wranglertools/fdnDCIC.py>`_ in Submit4DN for an example of how to generate the necessary information that will be passed to the server with each request.

Identifying specific items

Your script will need to add a uniquely identifying token to the Base URL in order to GET, POST or PATCH metadata for that item. IDs that can be used include: uuids, accessions, certain type specific identifiers and aliases. See the sections on ‘Using Aliases’ and ‘Referencing existing items’ for the types of identifiers that can be used in your requests.

Ordering of POST requests

Because in many cases fields in one Item may refer to another Item eg. the biosample field in the experiment_hi_c schema it is necessary to POST the referenced item prior to POSTing the item that refers to it. A sensible POSTing order is specified in the sheet_order array located around line 144 in the ``fdnDCIC.py` <https://github.com/4dn-dcic/Submit4DN/blob/master/wranglertools/fdnDCIC.py>`_ library.

JSON formatting

The most important component of your submission is the proper formatting of the data into json so it will map correctly onto the 4DN metadata schemas. The details of the schemas for all object types in the database can be viewed at https://data.4dnucleome.org/profiles/. Individual schemas can be viewed and/or retrieved via GET by appending the schema file name to the above URL (eg. for the Hi-C experiment schema https://data.4dnucleome.org/profiles/experiment_hi_c.json). For a listing of all schema files and associated resource names see this table, which should be up to date with the current schemas in the database.

Depending on the Item type that you are submitting there may be fields that require values (eg. experiment_type for experiments), fields for which values should never be submitted (eg. ‘date_created’ as this is an automatically generated value) and fields with specific formatting and fields that accept values of specific types. In many cases the values must be selected from a list of constrained choices. The documentation on field values described in detail here and the annotated json document below can be used as a guide on formatting your json. In addition, the unordered and unfiltered excel workbooks produced by get_field_info can be a useful reference for determining exactly what fields are associated with what object types. The processed workbook that is actually used for data submission does not reflect the exact schema structure should not be used as a direct reference for API submission.

JSON for an ExperimentHiC POST request

Field specification - how to find out what fields need what format, when to provide values and other useful tips

The three fields below are common to every Item - you don’t always need to include aliases but they will make some things a lot easier.

Accession and uuid are automatically assigned during initial posting so can only be used as identifiers to PATCH existing Items - not for POSTing. Note that all item types have a uuid but not all items have accessions.

While we encourage you to submit as many fields as possible there are some fields that are absolutely required to post an item. These required fields are identified in the “required” field of the schema.

If they are left out of a POST request will cause an error. You don’t need to include required fields if you are PATCHing an existing Item.

There are number fields and string fields - the field type can be found by referring to the schema directly or the workbook templates produced by get_field_info.

Some of the fields will only accept values from a constrained set of choices. These are indicated by ‘enum’ lists in the schemas (see above) or the ‘Choices’ list in the Excel workbooks. Some fields also have dependencies in that if one field has a value then another field must also have a value. Dependencies are specified in the schema.

Some fields accept an array of string values.

Some fields contain lists of sub fields that remain linked - effectively lists of embedded objects.

The embedded objects are enclosed in curly braces {} and as usual objects in the list are comma separated and enclosed in square brackets [].

When a field references another object the value you provide can be any identifier for that object eg. uuid, accession or type specific identifiers. If you are not sure if a field is referencing another object look for the ‘linkTo’ tag in the field specification in the schema.

The identifiers that you can use can be found in the “identifyingProperties” field of the schema of that Item type.

Protocol identifyingProperties

protocol field in experiment_hi_c submission

Finally there are some fields that cannot or should not be submitted. Many of these are marked with "permission": "import-items" and "readonly":true.

Others are marked as calculated properties that are derived from other existing information.

 Reverse links

Reverse links

Reverse (rev) links are actually a pretty cool thing. Any time you have one object link to another object, through a calculated or schema based property, a rev link allows you to easily create the reverse direction link on the object that was being linked to. In addition, rev links take the status of the item that we are reverse linking into account – we do not want to create rev links to items that have a status of ‘deleted’, for example. In ENCODE, rev links were represented by linkFrom connections. We have changed that to only use linkTo.

Here is a simple example for the experiment item type (src/types/experiment.py):

Experiment sets have a linkTo experiments through the array experiments_in_set field. To make a rev link back from the experiment to the experiment sets, we must define the rev link and then create a calculated property that populates the linkTo.

For the first part, we define the rev property on the Experiment object. It is a dictionary that is keyed by the rev link name and has a value of (<item type to rev link>, <field to rev link>). It would be defined as such:


	```rev = {

	
‘experiment_sets’: (‘ExperimentSet’, ‘experiments_in_set’),




} ```





You can read this is as: we want to create a reverse link to ExperimentSet using the experiments_in_set field. Next, we will define a calculated property on the Experiment that will call this rev and create a list of actual linkTos.


	```@calculated_property(schema={

	“title”: “Experiment Sets”,
“description”: “Experiment Sets to which this experiment belongs.”,
“type”: “array”,
“exclude_from”: [“submit4dn”, “FFedit-create”],
“items”: {

“title”: “Experiment Set”,
“type”: [“string”, “object”],
“linkTo”: “ExperimentSet”

}

})
def experiment_sets(self, request):

return self.rev_link_atids(request, “experiment_sets”)```

That’s pretty much it! Now you have an automatic rev link that will be created on your experiment back to your experiment set. To embed values from the experiment set, you can add them to your embedded_list like any other object. For example, to embed the accession of the experiment set, you would add:

	``embedded_list += [

	‘experiment_sets.accession’

]```

There are a couple things going on behind the scenes that we should be aware of. Both are defined on the base Item class (src/types/base.py). First, we have a method called rev_link_atids on Item that MUST be called within your calculated property creating the rev links. It is actually responsible for generating the rev links from snovault and turning them from uuids to @ids. The code for the method is below (you should not need to change it)

```<a method for Item class>


	def rev_link_atids(self, request, rev_name):

	“””
Returns the list of reverse linked items given a defined reverse link,
which should be formatted like:
rev = {


‘<reverse field name>’: (‘<reverse item class>’, ‘<reverse field to find>’),




}

“””
conn = request.registry[CONNECTION]
return [request.resource_path(conn[uuid]) for uuid in


self.get_filtered_rev_links(request, rev_name)]```








Lastly, there is an attribute on Item called filtered_rev_statuses. It has a tuple value and serves to filter out all of the items of the given statuses from your rev links. This is crucial to the rev links working – we do not want to rev link to items with ‘deleted’ or ‘replaced’ statuses. This attribute may be overloaded on any item type to provide more fine-grained filtering. In base.py, it is:

`
filtered_rev_statuses = ('deleted', 'replaced')
`

In snovault, check out src/snovault/resources.py for the underlying get_filtered_rev_links and get_rev_links functions that provide the foundation for rev_link_atids.




          

      

      

    

  

  
    

    Schema information
    

    
 
  

    
      
          
            
  
Schema information








	Schema Filename

	Worksheet Name

	Collection Name(s)





	analysis_step.json

	AnalysisStep

	analysis-steps, analysis_step



	award.json

	Award

	award(s)



	biosample.json

	Biosample

	biosample(s)



	biosample_cell_culture.json

	BiosampleCellCulture

	biosample-cell-cultures, biosample_cell_culture



	biosource.json

	Biosource

	biosource(s)



	construct.json

	Construct

	construct(s)



	document.json

	Document

	document(s)



	enzyme.json

	Enzyme

	enzyme(s)



	experiment_atacseq.json

	ExperimentAtacseq

	experiments-atacseq, experiment_atacseq



	experiment_capture_c.json

	ExperimentCaptureC

	experiments-capture-c, experiment_capture_c



	experiment_chiapet.json

	ExperimentChiapet

	experiments-chiapet, experiment_chiapet



	experiment_hi_c.json

	ExperimentHiC

	experiments-hi-c, experiment_hi_c



	experiment_mic.json

	ExperimentMic

	experiments-mic, experiment_mic



	experiment_repliseq.json

	ExperimentRepliseq

	experiments-repliseq, experiment_repliseq



	experiment_seq.json

	ExperimentSeq

	experiments-seq, experiment_seq



	experiment_set.json

	ExperimentSet

	experiment-sets, experiment_set



	experiment_set_replicate.json

	ExperimentSetReplicate

	experiment-set-replicates, experiment_set_replicate



	file_calibration.json

	FileCalibration

	files-calibration, file_calibration



	file_fastq.json

	FileFastq

	files-fastq, file_fastq



	file_processed.json

	FileProcessed

	files-processed, file_processed



	file_reference.json

	FileReference

	files-reference, file_reference



	file_set.json

	FileSet

	file-sets, file_set



	file_set_calibration.json

	FileSetCalibration

	file-set-calibrations, file_set_calibration



	genomic_region.json

	GenomicRegion

	genomic-regions, genomic_region



	image.json

	Image

	image(s)



	imaging_path.json

	ImagingPath

	imaging-paths, imaging_path



	individual_human.json

	IndividualHuman

	individuals-human, individual_human



	individual_mouse.json

	IndividualMouse

	individuals-mouse, individual_mouse



	lab.json

	Lab

	lab(s)



	modification.json

	Modification

	modification(s)



	ontology.json

	Ontology

	ontology(s)



	ontology_term.json

	OntologyTerm

	ontology-terms, ontology_term



	organism.json

	Organism

	organism(s)



	protocol.json

	Protocol

	protocol(s)



	publication.json

	Publication

	publication(s)



	publication_tracking.json

	PublicationTracking

	publication-trackings, publication_tracking



	quality_metric_bamqc.json

	QualityMetricBamqc

	quality-metrics-bamqc, quality_metric_bamqc



	quality_metric_fastqc.json

	QualityMetricFastqc

	quality-metrics-fastqc, quality_metric_fastqc



	quality_metric_flag.json

	QualityMetricFlag

	quality-metric-flags, quality_metric_flag



	quality_metric_pairsqc.json

	QualityMetricPairsqc

	quality-metrics-pairsqc, quality_metric_pairsqc



	software.json

	Software

	software(s)



	sop_map.json

	SopMap

	sop-maps, sop_map



	summary_statistic.json

	SummaryStatistic

	summary-statistics, summary_statistic



	summary_statistic_hi_c.json

	SummaryStatisticHiC

	summary-statistics-hi-c, summary_statistic_hi_c



	target.json

	Target

	target(s)



	treatment_chemical.json

	TreatmentChemical

	treatments-chemical, treatment_chemical



	treatment_rnai.json

	TreatmentRnai

	treatments-rnai, treatment_rnai



	user.json

	User

	user(s)



	vendor.json

	Vendor

	vendor(s)



	workflow.json

	Workflow

	workflow(s)



	workflow_mapping.json

	WorkflowMapping

	workflow-mappings, workflow_mapping



	workflow_run.json

	WorkflowRun

	workflow-runs, workflow_run



	workflow_run_sbg.json

	WorkflowRunSbg

	workflow-runs-sbg, workflow_run_sbg









          

      

      

    

  

  
    

    Search Info
    

    
 
  

    
      
          
            
  
Search Info

XXX: Not clear what the point of this documentation is, just looks like example queries.

URIS


	
	http://{SERVER_NAME}/search/?searchTerm={term}

	Fetches all the documents which contain the text ‘term’.
The result set includes wild card searches and the ‘term’ should be atleast 3 characters long.


	SERVER_NAME: ENCODE server


	term: string that can be searched accross four item_types (i.e., experiment, biosample, antibody_approval, target)




* TERMS ARE NOT INCLUDED until the corresponding boost values are added to the schemas of item_type *
- For example, you must add a boost of “definition” to the biosample schema for this term to be searchable for this object







	
	http://{SERVER_NAME}/search/?type={item_type}

	Fetches all the documents of that particular ‘item_type’


	SERVER_NAME: ENCODE server


	item_type: ENCODE item type (values can be: biosample, experiment, antibody_approval and target)










	
	http://{SERVER_NAME}/search/?type={item_type}&{field_name}={text}

	Fetches and then filters all the documents of a particular item_type on that field


	SERVER_NAME: ENCODE server


	item_type: ENCODE item type (values can be: biosample, experiment, antibody_approval and target)


	field_name: Any of the json property in the ENCODE ‘item_type’ schema















          

      

      

    

  

  
    

    Security
    

    
 
  

    
      
          
            
  
Security


In pyramids security is interwoven into the framework in a very fined grained fashion.  Each view can have it’s own security rules as can each object.  Some basic ideas that are helpful in understanding how security works in the system are listed below.





ACL

Access Control Lists are list of three-tuples that specify security rights.The three-tuples takes the form:

These ACL’s can be attached to a resource by setting the member acl as is done in encoded.types.base.Item and encoded.types.base.Collection.  The system by Default sets up several ACL’s:


Item based ACL’s


	ONLY_ADMIN_VIEW


	ALLOW_EVERYONE_VIEW


	ALLOW_VIEWING_GROUP_VIEW – based on data in award.viewing_group


	ALLOW_LAB_SUBMITTER_EDIT – based on users Lab association


	ALLOW_CURRENT_AND_SBMITTER_EDIT – everyone can view, lab submitter can edit


	ALLOW_CURRENT – same as ALLOW_EVERYONE_VIEW


	DELETED – used to now show deleted objects (even though they may still be in database)






COLLECTION based ACL’s


	ALLOW_SUBMITTER_ADD







Roles

There are several roles defined in the ACL’s in types\base.py, and more can be created elsewhere in the system.  Common roles are:


	group.admin – all powerful


	group.read-only-admin – can see everything


	remoteuser.INDEXER – used by Elastic Search to access all objects


	remoteuser.EMBED – used by Embed functionality to travers relationships and embed children into parent


	role-viewing_group_member – used with ALLOW_VIEWING_GROUP_VIEW to provide view information.


	role.lab_submitter – lab association for user to allow view / editing to appropriate data.






Permissions

Basic permissions include:


	view


	edit


	visible_for_edit – i.e. a deleted object is not visible for edit


	[‘add’] – can add to a collection






Default Item permissions

By default unless specified elsewhere all Items get a default ACL of:

This is automatically overwritten if the Item has a status defined in STATUS_ACL (typesbase.py(110)).  For example an item with status released will automatically get the ALLOW_CURRENT ACL.

This can potentially be overwritten in a particular types.py file by overwriting the __acl__.


_ac_local_roles__

Just before the ACL checks an item can be assigned special roles (during traversal, i.e. during a call to the web server) based on what is defined in _ac_local_roles__ (which by default will addsubmits_for.
  
    

    Static Pages
    

    
 
  

    
      
          
            
  
Static Pages

Most static pages content - unless hard-coded for the front-end (in case of custom interactivity, etc.) - exists in HTML or Markdown files in the repository, in an S3 bucket, or in-line within an insert. Contents of a page is an array of linkTo StaticSection items loaded in the same way as other Items, and exists in the “content” property on the Page Item. The “name” property of the Page Item becomes the static page’s path where it may be viewed.

In the /src/encoded/tests/data/[..]/page.json file, an insert defining the page available at “help/submitting/getting-started” might be in this form:

[...
{
    "title" : "Getting Started with Submissions",
    "name" : "help/submitter-guide/getting-started",
    "content" : [
        "help.submitter-guide.getting-started.introduction",
        "help.submitter-guide.getting-started.metadata-structure"
    ],
    "table-of-contents" : {
        "enabled" : true,
        "header-depth"  : 4
    }

}
...]





Notice the “content” property, which links to StaticSection Items which might look like the following in /src/encoded/tests/data/[..]/static_section.json inserts:

[...
{
    "name" : "help.submitter-guide.getting-started.introduction",
    "body" : "To get started, ...",
    "toc-title" : "Introduction",
    "options" : {
        "filetype" : "md"
    }
}, {
    "name" : "help.submitter-guide.getting-started.metadata-structure",
    "file" : "/docs/public/metadata-submission/metadatastructure1.html",
    "title" : "Metadata Structure"
},
...]





What the above configuration objects says, is for the back-end to enable a page route “help/submitter-guide/getting-started”, and at that route to return some JSON which has two sections - one with no title visible on page but with one in the table of contents (“Introduction”); and one with the same title visible for both table of contents and on page (“Metadata Structure”). If do not include “title” nor “toc-title”, or have “title” set to null without a “toc-title”, the section (& any children) will be excluded from the table of contents (but not the page). A Page title is mandatory (but not StaticSection title).

Importantly – if two or more StaticSections have titles or toc-titles defined on a page, then ALL section titles for that page will be visible in the table of contents, even if they do not exist, as otherwise header depths within different sections cannot properly/automatically align. If e.g. have a page with 3 sections, and two of them have titles, then the third section (without a title) will get an auto-generated title based off of its name (dashes replaced with spaces and capitalized) to be shown in the Table of Contents.

The section content will be the raw contents of the file located at file property (which maybe a remote location). The entirety of the “table-of-contents” object is sent across to the front-end to be used as configuration options for the table of contents. If “enabled” is set to false in this configuration, the page rendered on front-end will have just a single wider pane with all the content in lieu of a Table of Contents.

Section content is parsed based on the optional options.filetype field, which defaults to plain HTML. If a file is used as source of content (whether in repo or S3 bucket), this options.filetype is unnecessary as it is obtained from the file ending.


HTML Content

Is excluded from Table of Contents except for Section title (if any).

For HTML content (filename with .html extension or object.filetype not filled or set to ‘HTML’), no further parsing is performed for table of contents (aside from showing the table of contents if PageItem["table-of-contents"]["enabled"] == true). HTML content is simply inserted into sections of the page (under its section title, if any set), along with corresponding entries for the sections in Table of Contents. First-level ToC links navigate you in-page to top of section. Headers within the HTML content do not currently get parsed and added to Table of Contents (though this can be implemented at some point).



Markdown Content

For any Markdown content (filename with .md extension object.filetype set to ‘md’), for each section of content (contents of file from ‘filename’), the Table of Contents front-end script “looks” through the parsed Markdown content to gather next-decrement-level headers up until a header of same level as current ToC entry, and then dynamically generates links for those next-level headers in the Table of Conents which would navigate you in-page to that Markdown header.

This functionality may be controlled by the header-depth field in “table-of-contents” configuration. Only children headers as low as header-depth will be included in the ToC so that small headers may be excluded. By default, this is 6, as headers in HTML markup go as ‘deep’ as 6 (h1, h2, h3, h4, h5, h6). To only show section titles and no Markdown headers within the Table of Contents for a page, it should be enough to set header-depth to 0 or 1.



Text/String Content

For a section, can also define file to refer to a .txt file or have a plain-text body field (object.filetype == “txt”). It will be treated more or less like plain HTML but be slightly better implemented and safer for use on front-end.


Interactive React Component Placeholders (for front-end developers)

Sometimes, you may want to put some dynamic element onto a static page, but don’t want entire static page to be defined on the front-end. The /help page is a perfect example, as the vast majority of the content is in Markdown files, but there is an interactive slideshow that exists halfway down the page. For this, we create a “Text/String Content” section (“content” property instead of “filename” property), and in the content, put in a “placeholder” string. In such cases you will almost always want to exclude “title” property or set it to null, so the interactive element doesn’t appear in Table of Contents.

The placeholder string should look like this (displayed in context of section definition):

... {
    "filename" : "carousel-place-holder",
    "content" : "placeholder: <SlideCarousel />"
}, ...





It will be the word “placeholder”, followed by a colon, followed by any string you want – though React JSX syntax is reccommended for clarity. On the front-end, in the view or template React component which handles that particular static page route, there must exist a function named *replacePlaceHolder(placeholderString)*. This function will accept the string after placeholder:, with spaces removed, and should return a valid JSX element. For clarity, it is suggested to have the placeholder string be the same as the React/JSX component output of that function for that string. Having replacePlaceHolder() allows us to avoid security risks inherent in calling ‘eval(…)’.



Best Practices


	DO split Pages into multiple StaticSections with proper title for each, if possible, rather than having Page that has just one big long Markdown section/file.


	This will allow each section to be re-used in other places & apply permissions to each section.


	If there is only one or less sections with a title (e.g. could have multiple sections all with no titles or just one big long section), then the ## (h2) headers get promoted as if they were Section headers in TableOfContents. However, styling within the page itself will remain as Markdown h2 header (not section header). H1 (#) headers are reserved for Page titles and are not currently supported within (our parsing of) Markdown.


	If have 2+ static sections with titles, all sections and their titles — even if nonexistent — will be displayed in TableOfContents. If there’s a section for which title doesn’t exist, title will default to (JS version of) " ".join([ word.capitalize() for word in section.link.split("-") ]) where section.link is last bit of StaticSection name (e.g. “path.to.section.lorem-ipsum-1” => “Lorem Ipsum 1”).






	If are going to edit Pages/Sections through Fourfront UI (rather than using a Markdown/text editor & then adding to inserts) — then is a good idea to keep inserts up-to-date in order to make local development + testing simpler as well as provide an extra source of backups.


	Our primary mission isn’t to maintain/support a custom content management system so having a concrete outside-of-db representation of static pages I think is desireable.


	There is now a command called bin/export-data which can be used to export Page and StaticSection inserts into JSON files. Examples:
.. code-block:: bash


bin/export-data “https://data.4dnucleome.org/search/?type=Page&limit=all” -u ACCESS_KEY_ID -p ACCESS_KEY_SECRET > new_page_inserts_file.json
bin/export-data “https://data.4dnucleome.org/search/?type=StaticSection&limit=all” -u ACCESS_KEY_ID -p ACCESS_KEY_SECRET > new_static_section_inserts_file.json










	For images which desire to host externally (e.g. outside of repository or third-party URL), then it is suggested to upload images into a relevanet sub-folder (perhaps create an “/images/” folder for auxiliary images) of the “4dn-dcic-public” public S3 bucket. This bucket could also be used to host Markdown (.md) or other files, probably in the “/static-pages/” sub-folder, the URL of which can be used in the “file” field of StaticSections (will require a PATCH to Page or StaticSection to update 4DN Item content from file).






Permissions

Currently may set a status of “draft”, “published”, or “deleted” for any Page or StaticSection and permissions will work accordingly. Permissions by lab/user should work in same way as for other Items, but this hasn’t yet been tested.



StaticSections Above Search Results




Simplification & Future

If we like this structure of having a static page or block for (almost) each @type, we could simplify greatly by getting rid of the Sysinfo Item & just having search.py look-up if any page w/ name ’/search-info-header/’ + @type exists and then including its contents into a ‘search_header_content’ property as part of search results/response JSON.



BELOW SYSINFOS APPROACH WILL BE DEPRECATED SOON BUT FOR NOW STILL FUNCTIONAL



Static Section Header @type Mapping

Currently this can be dynamically updated via the SysInfo Item : /sysinfos/search-header-mappings/

The Item /sysinfos/search-header-mappings/ must exist in database for any static content to appear. Else will get nothing in area above search results. SysInfo cannot be inserted via deploy and must be POSTed in.

Do this on any instances we want mappings: https://gyazo.com/de6758e68ca898101218ad3d95687569 , with “mapping” taking the correct form (PATCHing subsequently after creation for updates).

Again, the name of the sysinfo object MUST be **search-header-mappings**

POST to <host>/sysinfo/ :

{
  "name" : "search-header-mappings",
  "title" : "Search Header Mapping",
  "description": "Mapping of Static search result header URIs to Item @type",
  "mapping" : {
      "WorkflowRun" : "/static-sections/search-info-header.WorkflowRun",
      "Workflow" : "/static-sections/search-info-header.Workflow"
  }
}





PATCH to <host>/sysinfo/search-header-mappings:

{
  "mapping" : {
      "WorkflowRun" : "/static-sections/search-info-header.WorkflowRun",
      "Workflow" : "/static-sections/search-info-header.Workflow",
      "FileSetMicroscopeQc" : "/static-sections/search-info-header.FileSetMicroscopeQc"
  }
}





The “value” in the ‘mapping’ dictionary/object is the @id or link to a StaticSection Item.
Here these static sections are referenced by their name (rather than UUID).
In order to allow such a link to your StaticSection, ensure the ‘name’ of it doesn’t have any slashes (/) or hashes (#).
For example, in the case above the names are search-info-header.WorkflowRun, search-info-header.Workflow, & search-info-header.FileSetMicroscopeQc.


Auto-Generated Help Dropdown Menu

Pages have an optional children field which holds an array of other Pages (as linkTos). Routes of child pages MUST extend the parent route. For example, page with name ==  “help/submitter-guide” must have children with names in the form of “help/submitter-guide/something”. The (sub-)children of the top level “help” page are automatically added to the top Help menu dropdown.






          

      

      

    

  

  
    

    Testing
    

    
 
  

    
      
          
            
  
Testing


Python : what & where

Below is a bulleted list briefly describing what each test file/test file type is testing.


	data/ : Contains inserts


	__init__.py : does nothing, just tells PyTest that this is where the tests are


	conftest.py : global configuration file for PyTest


	datafixtures.py : contains data fixtures (more on this below)


	test_access_key : tests access key creation and associated permissions


	test_aggregation : currently disabled, needs refactoring


	test_auth0 : tests routes/methods related to auth0


	test_authentication : verifies CGAP authentication policies are functioning


	test_batch_download : currently disabled, needs refactoring


	test_clear_es_db_contents : tests that we are able to clear es


	test_create_mapping : tests creating mapping for all items defined in encoded.commands.create_mapping_on_deploy


	test_download : tests that we can post an attachment and download it


	test_edw_hash : tests encrypting some strings with EDWHash


	test_embedding : tests that data store objects properly resolve their embedded fields


	test_fixtures : contains a few additional testing fixtures


	test_graph : tests that we can resolve dot/svg graphs


	test_higlass : currently disabled as it has not yet been configured on CGAP


	test_indexing : tests that we are able to successfully interact with elasticsearch using our data model


	test_key : tests that we can do various things with keys


	test_link : tests that we are able to properly update links within items


	test_load_access_key : tests that we are able to generate access keys based on a given env


	test_loadxl : tests that we can successfully load data and appropriate errors are thrown if not


	test_owltools : tests specific functionality of owltools


	test_permissions : tests the overall permissions hierarchy on CGAP - needs improvements


	test_post_put_patch : tests various behavior involving posting/patching data


	test_schema : testing if mixins load from schema, and schema syntactically correct


	test_search : test effects of embedding and what not on search


	test_server_defaults : sanity checks some aspects of our server configuration


	test_static_patch : tests our static page infrastructure functions


	test_type_<object> : test type specific stuff, minus embedding, calculated properties, update, etc…


	test_validation_errors : currently disabled, needs refactor


	test_views : tests many of the routes with different permissions on the application


	testing_views.py : various data/fixtures needed to run other tests





Deep-Dive: Python Tests

Testing CGAP is done in a variety of ways, nearly all of which are similar to how Fourfront testing is done as well. It’s first important to understand how PyTest works, as this is the framework we use for testing. See the PyTest docs [https://docs.pytest.org/en/latest/contents.html] .

In order to test CGAP several different setup steps are required. We make use of many different fixtures to build TestApp’s, automatically construct data, post data to our test application, setup users etc. A breakdown of some of the fixtures is below. Many of these base fixtures live in conftest.py and other more specific fixtures live in individual test files where they are most relevant.

# The following three fixtures define TestApp's in different states, most useful
# when testing user permissions. Depending on which one you use, the types of
# actions you can perform should be different, and thus PyTest leverages these
# fixtures to test that behavior

@fixture(scope="module")
def testapp(app):
    '''TestApp with JSON accept header.
    '''
    from webtest import TestApp
    environ = {
        'HTTP_ACCEPT': 'application/json',
        'REMOTE_USER': 'TEST',
    }
    return TestApp(app, environ)


@fixture
def anontestapp(app):
    '''TestApp with JSON accept header.
    '''
    from webtest import TestApp
    environ = {
        'HTTP_ACCEPT': 'application/json',
    }
    return TestApp(app, environ)


@fixture
def authenticated_testapp(app):
    '''TestApp with JSON accept header for non-admin user.
    '''
    from webtest import TestApp
    environ = {
        'HTTP_ACCEPT': 'application/json',
        'REMOTE_USER': 'TEST_AUTHENTICATED',
    }
    return TestApp(app, environ)





In addition to infrastructural fixtures, there are also data fixtures. Nearly all of these are defined in datafixtures.py. Some examples with explanation are below.

# The below two fixtures create and post 'project' and 'institution' data to
# the normal 'testapp' as defined above. Much of the data processed by CGAP
# requires both project and institution tags, so these two fixtures are used
# often throughout the test code.

@pytest.fixture
def project(testapp):
    item = {
        'name': 'encode-project',
        'title': 'ENCODE Project',
        'viewing_group': '4DN'
    }
    return testapp.post_json('/project', item).json['@graph'][0]

@pytest.fixture
def institution(testapp):
    item = {
        'name': 'encode-institution',
        'title': 'ENCODE Institution'
    }
    return testapp.post_json('/institution', item).json['@graph'][0]

# ...
# There are additional data fixtures as well that are more specific to certain
# data types. They are most often used when testing a specific data type we have
# defined, such as 'individual'. Two example data fixtures for this type that
# don't actually post the data are below.

@pytest.fixture
def MIndividual():
    return {
        'project': 'encode-project',
        'institution': 'encode-institution',
        'sex': 'M'
    }

@pytest.fixture
def WIndividual():
    return {
        'project': 'encode-project',
        'institution': 'encode-institution',
        'sex': 'F'
    }

# The below example test utilizes several of the above fixtures to ensure that
# posting an individual on the normal testapp works as expected. The arguments
# to the test are the fixtures being used. The test not only checks that the
# object creation succeeds but also checks that the calculated property 'display_title'
# is present as well.

def test_post_valid_individuals(testapp, project, institution, MIndividual, WIndividual):
    """ Posts valid individuals """
    testapp.post_json('/individual', MIndividual, status=201)
    res = testapp.post_json('/individual', WIndividual, status=201)
    assert 'display_title' in res







Tips and Tricks


	Don’t underestimate the importance of conftest.py - anything you need to do globally across the test suite should probably be done here.


	The easiest way to work with test inserts is to add them into encoded.tests.data.workbook-inserts and specify the workbook fixture in your test.


	import pdb; pdb.set_trace() is your friend! But not if you’re debugging logging - capfd bugs out if you use pdb and your log entries will be lost.


	bin/test -k <test name> and bin/test -k <test_file> work great to run tests or a module of tests in isolation. Sometimes behavior is different.







JavaScript

Unit tests in JavaScript are performed with **Jest** [https://facebook.github.io/jest/], and initialized via npm test <testfilenameprefix> where testfilenameprefix is the first part (before .js) of the filename located in src/encoded/static/components/__tests__. Run npm test without arguments to run all tests. Execution of all tests is also automatically triggered in Travis upon committing or pull requesting to the GitHub repository.


Guidelines


	Look at current tests to get understanding of how they work.


	Check out the **Jest** API [https://facebook.github.io/jest/docs/api.html].


	Check out the React **TestUtils** documentation [https://facebook.github.io/react/docs/test-utils.html].


	If you need to test AJAX calls, utilize **Sinon** [http://sinonjs.org] to create a **fake server** [http://sinonjs.org/docs/#fakeServer] inside testing scripts, which will also patch XMLHttpRequest to work within tests. For example, in a .../__tests__/ file, can have something resembling the following:




sinon = require('sinon');
var server = sinon.fakeServer.create();

// Setup dummy server response(s)
server.respondWith(
  "PATCH",                                      // Method
  context['@id'],                               // Endpoint / URL
  [
      200,                                      // Status code
      { "Content-Type" : "application/json" },  // Headers
      '{ "status" : "success" }'                // Raw data returned
  ]
);

// Body of test
doSomeFunctionsHereWhichSendAJAXCalls();          // Any code with AJAX/XHR calls.
server.respond();                                 // Respond to any AJAX requests currently in queue.
expect(myNewValue).toBe(whatMyNewValueShouldBe);  // Assert state in Jest that may have changed in response to or after AJAX call completion.

doSomeMoreFunctionsWithAJAX();
server.respond();
expect(myOtherNewValue).toBe(whatMyOtherNewValueShouldBe);

server.restore();                                 // When done, restore/unpatch the XMLHttpRequest object.










          

      

      

    

  

  
    

    Web Submission
    

    
 
  

    
      
          
            
  
Web Submission


	An online submission interface has been developed to help with the submission of 4DN metadata.


	This web interface is especially useful for;


	submitting one or a few experiments


	editing the metadata for an existing experiment


	understanding object dependencies in our metadata schemas (for example learning that every experiment needs a type and a biosample).






	The system has been developed as a submission wizard that allows both the stepwise creation of database objects and full submission of an entire experiment with all required associated objects.


	We do recommend you review the information on the Getting Started page to get some tips on important concepts like aliases and Replicate Sets.





Creating New Items

There are several possible ‘entry’ points to a web submission


	You may want to start by entering metadata for an ExperimentSetReplicate object or an Experiment object of a particular type (eg. a Hi-C experiment or Microscopy experiment).


	You can start by creating experiments and then as a subsequent step associating multiple experiments with a Replicate Set.


	You can start your submission at a lower level item type (eg. Biosample) if that makes things easier for you.




To create a new item


	Navigate to an item of the type for which you want to create metadata.


	You can find Create and Edit links near the top of a page for most items in our system.  NOTE You will not see one or both of these buttons if you lack permission to perform these operations, which may be due to the status of the item and/or your role in our system.




#. When you click Create the first thing you will be asked is to create an alias for your item.  This is a lab specific unique identifier for this object taking the form of xxxx:xxxxx where the portion before the colon is a lab designation eg. 4dndcic and the portion after is an identifier that you choose that is unique within your lab group (see section on using aliases here).
#.


When you submit your alias you will be brought to a page where you can start entering metadata.


	You will see two gray bars Fields and Linked Objects and selecting the + will expand those bars to show the fields and objects that can be entered.


	Hovering your pointer over the i next to Navigation pops up an explanation for what the different colors of the objects displayed in the Navigation tree.


	If a field or object are required that is indicated.


	The Fields section is where you fill out basic fields that are not linked to other database objects.


	In the Linked Objects section you can link other Objects to the one you are working on, either by selecting from a list of available existing objects or by creating a new object of the type needed for the particular field it is linked to.


	As you create or add linked Objects you will see the Objects listed in the Navigate section change colors accordingly.


	You can use the Navigate section to review what you have submitted, validated and what remains to be added.








	And finally when all your linked objects are submitted and validated (green) you can validate and submit the object to complete your submission.




WARNING: Be careful with the BACK and RELOAD buttons. Currently, if you choose to create a new linked object and then decide you actually don’t want to or should have actually chosen an existing object you still should create the object with only the minimum information required, Validate and then Submit it.  You will then be taken back to the previous form you were working on and be able to remove the unwanted object.  If you try to navigate back to the previous page using your browser buttons you will lose the previously unsubmitted changes.  We are working to improve this aspect of the interface.



Editing Existing Objects


	You can use the online submission interface to make edits to existing items providing you have permission to do so.


	If an object has been ‘released’ either to the 4DN project or to the public it can no longer be changed.


	If the object has an ‘in review’ status then you can make changes to fields provided you are the submitter of that object or a submitter for the lab that submitted the object.




WARNING: Please take care to be sure that the object you are editing is really the one you want to change.


	Navigate to that objects page and if the object is editable then you should see an Edit button.


	After clicking the Edit button you will be brought to a page as described above.


	This time if you click on the + in the Fields or Linked Objects sections you will see the existing values, to which you can make changes as needed.


	Then validate and submit to commit the changes to the system.








          

      

      

    

  
nav.xhtml

    
      Table of Contents


      
        		
          CGAP Documentation
        


        		
          CGAP Infrastructure Landing Page
        


        		
          Local Installation
        


        		
          Infrastructure Overview
        


        		
          Dataflow Overview
        


        		
          Variant Representation
        


        		
          How to Provision Annotations
        


        		
          CGAP-Docker (Local)
        


        		
          CGAP-Docker (Production)
        


        		
          Updating Items from Ontologies
        


      


    
  

_images/2c78553db55e67109849db5779c7109fc7e525a3.png
General Dump options

Filename /Users/alex/db_dumps/2017-07-06-fourfront-webdev-1.sql n

Format Plain v

Compression ratio

Encoding SQL_ASCII X v

Number of jobs

Role name Select from the list v






_images/344ae13ae2c431c5f806e2c91bc4e225da098bd8.png
[ JON ] pgAdmin 4

File ~ Object ~ Help ~
i Browser @ Dashboard # Properties [3 SQL |+ Statistics < Dependencies {3 Dependents i Help: Backup ¥ Query-1
¥ W Laldivys
+ > Event Triggers & B v Q|- & B o Y <~ | 100rows % % [ | @

¥ % extensions 4-prod-ssh-ebdb-public.propsheets
L .

@ Foreign Data Wrappe
1 SELECT * FROM public.propsheets

# ) Languages 2 ORDER BY sid ASC LIMIT 100
=) @Schemas (1) 3

=) 0 public
’; \. Collations
} @ Domains
+ @ FTS Configure

Data Output Explain  Messages History

+ . FTS Dictionari
@ name @ properties @ tid
+ & FTS Parsers [PK] integ character varying jsonb uuid
W
- FTS Template 986b362f-4eb6-4a9c-8173-3... {"status":"current","first_na.. = 2570536e-5ab1-40e5-b9d9-...
+-I[Z] Foreign Table:
E oreign fable 2 986b362f-4eb6-4a9c-8173-3... {"status":"current","first_na... = 30fb4021-bb5a-42a2-bd10-d...
4] Functions
- 3 986b362f-4eb6-4a9c-8173-3... {"status":"current","first_na... = 527e0b7b-abac-4573-8c6f-a...
o[ Materialized v
i %s 4 986b362f-4eb6-4a9c-8173-3... {"status":"current","first_na... = 0c4f347c-1cdf-4748-8b64-2...
? equences
_ [ Tables (8) 5 986b362f-4eb6-4a9c-8173-3... {"status":"current","first_na... = 73e0a0ac-810c-41c9-8b59-4...
+ [ biobs 6 986b362f-4eb6-4a9c-8173-3... {"status":"current","first_na... = b579a48a-9268-4bee-9fcd-1...
+ =Curl'erlt_pl 7 986b362f-4eb6-4a9c-8173-3... {"status":"current","first_na... = 43c5872b-1237-4cb2-800c-...
i ||
- keys _4eb6-4a9c-8173- " - -
= i 8 986b362f-4eb6-4a9¢c-8173-3... {"status":"current| Backing up an object on the server '4-
P e 9 bObICE07-f8b4-4f02-934-9... {"status":" prod-ssh (localhost:5999)' from
; '
+ propsheet database
e 10 828cd4fe-ebb0-4b36-a94a-d... {"status":
¥ resources . - Thu Jun 29 2017 15:13:31 GMT-0400 (EDT)
- transactio 11 986b362f-4eb6-4a9c-8173-3... {"status":
5[ users 12 986b362f-4eb6-4a9c-8173-3... {"status": 27.447958 seconds
+ % Trigger Functi 13 986b362f-4eb6-4a9c-8173-3... {"status": Click here for details.
-0 Types 14 986b362f-4eb6-4a9c-8173-3... {"status":
—=
15 986b362f-4eb6-4a9c-8173-3... {"status":"current" . "tirst na... eZ2/91/a4-95t4-4955-9¢c52-3...






_images/cgap_infra_diagram.png
User

& Fublic subnet A

~© @ -

NAT Gateway.
Apphc:rmn Load Balancer

Internet
Gateway

Security Groups/IAM Role Legend

08
]
HITPS Security Group

Allows HTTPS Traffic
inbound and outbound
onda3

08.
B
- ]

L8 Security Group.
Al ol o ports

Ty

Ecs Lambda
Assumed Role

Public Route Table.

Assumed Role

B Puhlic subm B

NAT Gateway
Application Load Balancer

Load Balancer
Security Group

08
=

0Ll

=&

Application Security Group

Allows HTTPS Traffc on
443, HTTP on 80, udp
123, 5sh 22

0Ll

)

DB Security Group
Allows HTTPS Traffic on
54005499, bidirectional

1

Ec2

172.16.0.0
172.164‘L0
172.16.2.0

Private Route Table

¢ Aws Cloud

. Private Subnet

ECS Tasks

. Private Subnet

ECS Tasks

ECS Tasks
Security Group

RDS EC2

ElasticSearch Foursight
ElasticSearch RDS EC2 Foursight
ElasticSearch RDS £c2 Foursight

Security Group * Security Group - Security Group - Sacurity Group

Q

=

0L.

=8

??

09 08
&/ R

ﬂa

VPC Interface
Endpoints

[ AWS services

> & M

v
M E

=
[P
=

SecretsManager

™

CloudWatch

Assum